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Photoreceptor sensory cilia and ciliopathies: focus
on CEP290, RPGR and their interacting proteins
Rivka A Rachel, Tiansen Li and Anand Swaroop*
Abstract

Ciliopathies encompass a broad array of clinical findings associated with genetic defects in biogenesis and/or
function of the primary cilium, a ubiquitous organelle involved in the transduction of diverse biological signals.
Degeneration or dysfunction of retinal photoreceptors is frequently observed in diverse ciliopathies. The sensory
cilium in a photoreceptor elaborates into unique outer segment discs that provide extensive surface area for
maximal photon capture and efficient visual transduction. The daily renewal of approximately 10% of outer
segments requires a precise control of ciliary transport. Here, we review the ciliopathies with associated retinal
degeneration, describe the distinctive structure of the photoreceptor cilium, and discuss mouse models that allow
investigations into molecular mechanisms of cilia biogenesis and defects. We have specifically focused on two
ciliary proteins – CEP290 and RPGR – that underlie photoreceptor degeneration and syndromic ciliopathies. Mouse
models of CEP290 and RPGR disease, and of their multiple interacting partners, have helped unravel new functional
insights into cell type-specific phenotypic defects in distinct ciliary proteins. Elucidation of multifaceted ciliary
functions and associated protein complexes will require concerted efforts to assimilate diverse datasets from in vivo
and in vitro studies. We therefore discuss a possible framework for investigating genetic networks associated with
photoreceptor cilia biogenesis and pathology.

Keywords: Ciliopathy, Retinal degeneration, Primary cilium, Sensory cilia, CEP290, RPGR, Bardet–Biedl syndrome,
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Introduction
As the field of cilia biology has exploded over the past
decade, our understanding has evolved from the initial
realization of cilia as important cellular structures to the
knowledge that defects in these organelles constitute a
unifying framework in numerous syndromic diseases,
collectively called ciliopathies. More recently, distinct sets
of genes have been identified as causing overlapping symp-
tom clusters, making it possible to link specific genetic
mutations to clinical diagnosis. Amidst this rapid progress,
confusion arose because disease conditions manifest as a
continuum of disorders with varying severity and organ
involvement rather than cleanly segregated entities. As a
result, even identical gene mutations can give rise to dis-
tinct clinical manifestations, while a well-defined clinical
syndrome can trace its etiologic origin to a multitude of
gene defects. The goal of this review is to focus on the
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differences among ciliopathies based on molecular and
genetic characteristics and on the realization that assign-
ing a specific clinical diagnosis is only the starting point
for identifying the culprit gene. In reaching a clear under-
standing of molecular mechanisms and future therapeutic
strategies, correlating specific symptoms to genetic muta-
tion(s) should provide valuable insights.
We have focused on ciliopathies that include retinal

degeneration as part of the clinical spectrum in order to
provide a comprehensive analysis of their mutations, phe-
notypes, subcellular localization of the gene products,
and functional insights from respective mouse models.
In addition to summarizing the current state of know-
ledge, we have attempted to define gaps in our under-
standing of cilia biology and suggested approaches for
future investigations.
An overview of ciliogenesis and cilia function
Cilia can be categorized as primary, sensory or motile.
Nearly all cells develop a primary cilium, which serves
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either as a precursor to a cluster of motile cilia (in cells
such as ventricular ependyma and tracheal epithelium)
[1,2] or remains as an environmental sensor. Given that
most primary cilia are now known to enable cells to
interact with and respond to their environment [3], the
distinction between primary and sensory cilia has lost
much of its meaning. These cilia are highly specialized
organelles that have developed to mediate perception of
light, sound, odorants, osmolarity, pressure, flow, circu-
lating hormones, and position within the plane of a tis-
sue (via gradients of morphogens); these perceptions are
then transmitted into the cell via signaling pathways to
mediate distinct responses. For example, photoreceptor
outer segments are filled with stacks of membranous
discs densely packed with rhodopsin, the receptor mol-
ecule that initiates a transduction cascade turning photons
into electrical signals. In the cochlea, the kinocilium serves
as a transient anchor point for positioning the stereocilia
bundles. In olfactory epithelium, the multiple cilia in each
cell converge odorant receptors in the membrane and
orchestrate G-protein coupled receptor signaling in re-
sponse to environmental stimuli. Many recent reviews have
summarized ciliogenesis and signaling pathways in cilia
[4-13], motile cilia [14], mechanosensory cilia mechanics
[15], cilia as stress and flow sensors [16], and clinical man-
ifestations and diagnosis of neuronal pathology [17,18].

Ciliopathies and associated pleiotropic phenotypes
Kartagener’s syndrome was one of the earliest descrip-
tions of a motile cilia disorder [19]. While Bardet–Biedl
syndrome (BBS) was recognized as a distinct collection
of phenotypes at least 60 years ago [20] and Joubert
syndrome (JBTS) as early as 1968 [21], ciliopathies have
become recognized to have sensory cilia as a unifying
theme only during the last decade [22,23]. Clinical en-
tities that affect motile cilia only, such as Kartagener’s
syndrome/primary ciliary dyskinesia, manifest situs inversus,
bronchiectasis and sinus/respiratory complications, but
lack other clinical features commonly seen in ciliopathies.
The etiology of primary ciliary dyskinesia lies in genetic
defects that inactivate selected molecular motors or struc-
tures within the cilia critical for motility, usually in dyneins
or radial spoke components [24], thereby explaining more
uniform and limited manifestations. Interestingly, defects
in the sensory ciliopathies encompass a broader spectrum
of gene functions including cilia biogenesis and structure,
receptor trafficking and signaling, implying that sensory
roles of cilia are more complex and critical to life.
Ciliopathies share an overlapping conglomeration of

features, exhibiting retinal degeneration, cognitive impair-
ments, cerebellar dysmorphogenesis, kidney cysts, hepatic
fibrosis, polydactyly, situs inversus, obesity, skeletal/
thoracic dysmorphology, genitourinary defects, cardior-
espiratory abnormalities, neural tube patterning defects,
and/or hydrocephalus (Figure 1) [25-27]. Although vari-
ous syndromes may have unique symptom clusters, the
distinction among clinical entities is often blurred. Clinical
diagnosis alone thus provides little insight into disease
etiology. Adding molecular diagnosis to classical clinical
findings can be valuable in clarifying possible pathogenic
mechanism(s). For example, the distinction between nephro-
nophthisis (NPHP) and Senior–Løken syndrome (SLSN)
depends on the presence of retinal findings in SLSN;
however, individuals in NPHP pedigrees can also manifest
ocular defects [28]. Similarly, the distinction between
COACH syndrome (Joubert syndrome with congenital
hepatic fibrosis) and JBTS is blurry. With a goal to estab-
lish a link between clinical features, syndromes, and gen-
etic causes, we have summarized relevant details of many
ciliopathies and their causative genes based on informa-
tion from the Online Mendelian Inheritance in Man data-
base in Figure 1.
In contrast to motile cilia, sensory cilia are uniquely

modified to carry out a particular function in a specific
organ. As each tissue is designed to mediate a different
sensory function, the associated pathways are more com-
plex and slow to unravel (see Table 1). To comprehend
the significance of cilia involvement, it would be helpful
to delineate the pathological process in each tissue; for
example, kidneys may have either massive polycystic dis-
ease or glomerulonephritis, differing pathologies that
probably represent distinct etiologies. Cellular pathology
and dysfunction in sensory ciliopathies may result from
absent, shortened or otherwise morphologically abnor-
mal cilia; from normal cilia structure but no transport/
function; or from different cell types/tissues affected in
various conditions. In photoreceptors, for example, muta-
tions in various ciliopathy genes result in a number of
distinct phenotypes, ranging from complete failure of con-
necting cilium formation [29] and curtailed outer segment
biogenesis [30], to abnormalities of disc assembly [31]. All
of these defects should eventually be traceable to a stage
in ciliogenesis, transport or maintenance. Photoreceptors
thus offer a unique opportunity to evaluate the contribu-
tion of ciliary proteins.

Photoreceptor structure, modified cilium and transport
The dense stacks of rhodopsin-laden discs in photo-
receptor outer segments represent a highly complex and
unique example of sensory cilia specialization, enlarged
to house the machinery of phototransduction. As the vast
majority of photoreceptors in mouse and human retina
are rods, our remarks are directed primarily towards rod
photoreceptors. Four ciliary compartments can be defined
in photoreceptors, based on expression and other studies
(Figure 2 and legend); these include the distal cilium
(operationally defined as the domain occupied by Rp1
and Mak), the proximal cilium or transition zone (known



Figure 1 (See legend on next page.)
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Figure 1 Ciliopathy genes with syndromic manifestations. Information from Online Mendelian Inheritance in Man (http://www.ncbi.nlm.nih.
gov/omim). ALMS, Alstrom syndrome; BBS, Bardet–Biedl syndrome; COACH, Joubert syndrome with congenital hepatic fibrosis; JATD, Jeune
asphyxiating thoracic dystrophy; JBTS, Joubert syndrome; LCA/RP, Leber congenital amaurosis/retinitis pigmentosa; MKKS, McKusick-Kaufman
syndrome; MKS, Meckel–Gruber syndrome; NPHP, nephronophthisis; PKD, polycystic kidney disease; SLSN, Senior–Lø1ken syndrome.
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in photoreceptors as the connecting cilium), the basal
body, and the periciliary ridge complex or periciliary
membrane complex [75,76], which is analogous to what is
referred to as the ciliary pocket in general cilia literature
[77]. Expression of ciliopathy-associated proteins is gener-
ally restricted to one of these four domains (Figure 2).
Thus, it is now possible to divide ciliopathy proteins by
discrete anatomical localization and to contemplate under-
standing molecular mechanisms based on precise expres-
sion data from confocal images. These proteins are
identified as being expressed in specific compartments.
Axo: INV/NPHP2 [43], NPHP3 [43], NPHP9/NEK8
[43], RP1, SDCCAG8 [78], MAK [79]; TZ/CC: NPHP1
[43], NPHP4 [43], NPHP8/RPGRIP1L [43], NPHP5/
IQCB1 [43], NPHP6/CEP290 [43], RPGR RPGRIP1 [80-82],
AHI1 [83], RP2 [84], Lebercilin [85], IFT88 [85]; BB:
BBS1, BBS2, BBS3, BBS4, BBS5, BBS7, BBS9, MKKS/BBS6
[31]; PC/PCC: USH2A/usherin [75], DFNB31/USH2D/
whirlin, [75], VLGR1 [75]. Having immuno-electron micro-
graph images of protein expression in relationship to micro-
tubule bundles, basal body, and transition zone will further
advance our understanding of protein function.
Compartment 1, the distal cilium or axoneme, contains

proteins that primarily modulate cilium length; these in-
clude MAK [79], RP1 [87], RP1L1 and IFT20 [88]. In
photoreceptors, compartment 1 delineates the base of the
outer segment (Figure 2B,E). Compartment 2 is referred
Table 1 Molecular pathways associated with ciliary pathology

Organ/tissue/cell type Signaling/biogenesis pathway(s)Wnt, S

Retina – photoreceptors Ciliogenesis and transport

Cognition – brain GPCR trafficking to neuron cilia

Cerebellum – granule cells? IFT, Wnt, Shh

Kidney cysts Wnt/PCP, Shh, mTOR, Ca2+; mechanosensa

Hepatic fibrosisa Ductal plate malformation – PCP?; recepto
hyperproliferation

Polydactyly Shh

Situs inversus Nodal, PCP

Obesity Neuronal cilia receptors Shh

Skeletal/thoracic Mechanical sensation, Shh, IFT

Genitourinary Ca2+

Cardiorespiratory Heart – Shh, cardiogenesis; lung – primary

Neural tube defects/
hydrocephalus

Shh, PCP

GPCR, G-protein coupled receptor; IFT, intraflagellar transport; JBTS, Joubert syndrom
importance of distinguishing primary (for example, PCP/ductal plate malformation)
to as the connecting cilium in photoreceptors and is
equivalent to the transition zone of motile and primary
cilia. Proteins in this zone include CEP290 [30,89-91],
RPGR [30,92-99], RPGRIP1 [80], RPGRIP1L [100-105],
IFT88 [106-108], KIF3A [109], KIF7 [110], and LCA5/
Lebercilin [85]. Although intraflagellar transport proteins
mediate ciliary transport along the length of the cilium,
antibody localization via immunohistochemistry identifies
them in specific compartments. We believe that the ap-
pearance of being concentrated in a particular subzone
may reflect a bottleneck in transit. Compartment 3 com-
prises the basal bodies and the pericentriolar material.
The proteins in this domain include BBS1 [111], BBS4
[111], BBS3 [112], MKKS [113], TTC8/BBS8 [114], and
RAB8A [115]. In addition to these three core compart-
ments, a peripheral component contributing to ciliopathies
is the periciliary ridge (Compartment 4). The analogous
structure in non-photoreceptor cells is the ciliary pocket
[77]. The periciliary ridge was originally described in frog
photoreceptors by scanning electron microscopy [76]. The
same structure is not visible in mammalian photorecep-
tors; however, three USH2 proteins (usherin, whirlin and
VLGR1) mark a functionally equivalent region, referred to
as the periciliary membrane complex, to indicate a highly
specialized membrane microdomain [75,116]. Distal to the
basal body are structures called rootlets, which provide
support for the basal bodies and cilia. A notable
in each affected tissue

hh, PDGF, PCP Reviews and other
references

[32,33] [34]

[35,36] JBTS: [37] [38,39]

[40-42]

tion, fluid pressure, proliferation [43-50]

rs expressed on cilia; cysts – [51-57] [46]

[58]

[59]

[60] [46]

[58,61-66]

[67]

cilia precede motile cilia [1,68] [69] [70] [71]

[72] [73,74]

e; PCP, planar cell polarity; PDGF, platelet-derived growth factor. aNote the
and secondary (for example, hepatic fibrosis and congestion) characteristics.
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Figure 2 Four distinct compartments in photoreceptor primary cilia, indicating known proteins that define their respective extent.
The four compartments are: (1) distal cilium or axoneme (Axo; green); (2) connecting cilium/transition zone (CC/TZ; orange); (3) basal body
(BB; purple); and (4) periciliary complex or ciliary pocket (PCC/CP; red). These compartments serve discrete functions in the cilium. (A) Schematic of a
photoreceptor, showing specialized domains of the cell. The primary cilium elaborates into stacks of outer segment disks packed with rhodopsin,
which serves as the primary light sensors of the cell. (B) Enlargement of the photoreceptor transition zone in two dimensions showing the four
structural and functional domains in which most ciliary proteins are expressed. These domains are identified by known protein markers, such as
acetylated α-tubulin (Axo + CC/TZ) and γ-tubulin (BB). Note: illustration of outer segment is based on a traditional model of disc morphogenesis in
which nascent discs are open to the extracellular milieu, but a newer model posits that new discs form within the enclosure of outer segment plasma
membrane [86]. (C) Cross-section through the CC/TZ of the photoreceptor showing the relationship between the microtubules of the cilium and the
inner segment, via the PCC/CP. (D) Three-dimensional representation of the transition zone and adjacent domains shown in (B). Note the manner in
which the PCC surrounds the TZ. Note also that the TZ is the one compartment that contacts all other compartments. (E) Electron micrographs
showing longitudinal (top) and cross-section (bottom) views of mouse photoreceptors. Functional domains are highlighted with the corresponding
colors shown in the other panels.
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protein in this compartment is CROCC (rootletin)
[117]. While several not strictly ciliary proteins have
been included in the list of ciliopathy proteins (Fig-
ure 1) as mutations in these cause cilia-related pheno-
types, a number of cilia proteins are not included – for
example, trafficked cargos that are integral for outer seg-
ment function or cytoskeletal proteins that are general fea-
tures of all ciliated cells.
Knowing the compartmental localization of individual

proteins within the cilium will lead to new insights into
cilia biogenesis and function. For example, groups of cilia
proteins expressed in the same compartment, such as
CEP290 and RPGR, may function in related pathways
(Figure 3). Other documented interactions between pro-
teins expressed in adjacent compartments (CEP290 and
MKKS [31]; NPHP1 and NPHP4 [43]; RPGR and USH2
[118]) might provide clues to how proteins in different com-
partments cooperate in mediating transport or signaling.
Interesting and non-exclusive possibilities are: the expres-
sion patterns indicate pools of protein accumulation



Figure 3 Interactome of ciliary proteins directly or indirectly connected to CEP290 and RPGR. Ciliary proteins directly (bold dotted lines)
or indirectly (thin dotted lines) connected to CEP290 and RPGR. Ciliary expression domains are colored as in Figure 2. This network shows
representative interactions.
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rather than absolute boundaries; a system of protein relays
transports cargo or signaling from the cell body to the cilia
and back; interacting proteins are part of larger multi-
protein complexes with overlapping boundaries; and/or
discrete molecules of a given protein (for example, CEP290)
form complexes within its primary compartment (transition
zone), while other CEP290 domains interact with separate
complexes in other compartments (for example, basal
body). Given the predicted three-dimensional structure of
CEP290 as a long, fibrillar coiled-coil protein, and the
plethora of its interactors (Figure 3), a central role in
transport and communication is suspected.
Retinal degeneration in clinical ciliopathies
Loss or dysfunction of photoreceptors is a moderately
penetrant phenotype in ciliopathies. In the clinic, the ret-
inal defect is called retinitis pigmentosa (RP), and in cases
with an early childhood onset clinicians frequently give
the diagnosis of Leber congenital amaurosis (LCA). Dif-
ferences among ciliopathy phenotypes reflect both the
causative gene and specific mutations within each gene.
Retinal degeneration in BBS [25,119] tends to be slower
compared with other ciliopathies. Patients with Meckel–
Gruber syndrome have severe neural tube closure defects
and early lethality; vision is thus not generally assessed in
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these patients [120,121]. Many JBTS patients develop a
degree of childhood vision impairment [101,110,120].
Alstrom syndrome patients develop vision loss in young
adulthood [122]. Like JBTS cases, patients with SLSN
tend to exhibit early vision loss [34,123-125]. Visual im-
pairment in a child can be the presenting feature of Jeune
syndrome (Jeune asphyxiating thoracic dystrophy) [126].
Mouse models of human ciliopathies with retinal
degeneration
Integration of biochemical, cell biologic, protein interac-
tions and human genetic/clinical datasets with genetic
mutations in mice provides deeper insight into each
gene function as it relates to cilia and pathogenic pro-
cesses. Animal studies can also explain the pleiotropic
nature of ciliopathies and apparent variability in clinical
and disease manifestations; these may include spatial/
temporal expression pattern differences, functional redun-
dancies and variations in genetic background. Moreover,
cell-based and gene-based therapies can be evaluated for
toxicity and therapeutic value before moving to larger
animal (dog, primate) and human studies. A large num-
ber of ciliopathy mouse models with retinal degeneration
have been reported and are summarized in Table 2. Here,
we focus on two ciliopathy genes involved in retinal dys-
trophy: CEP290, mutations in which cause up to 15 to
25% of LCA [127]; and RPGR, the most common cause
of X-linked RP and one of the most frequent causes of all
forms of RP [128,129].
CEP290 mutations lead to a range of ciliopathy syn-

dromes with variable clinical manifestations in humans
[121,166-168] (Figure 1). Many patients present with full-
spectrum ciliopathy yet select alleles cause only rapid
photoreceptor degeneration (LCA) [89,127,169]. A hypo-
morphic allele of Cep290, rd16, has been described in
mice [30]; Cep290rd16/rd16 mice show rapid degeneration
of rod photoreceptors beginning around postnatal day 14
and leaving only residual cones by postnatal day 28 [89].
Slower cone loss and preservation of central pathways in
Cep290rd16 mice provide opportunities for therapy [137].
Aside from the vision loss, the Cep290rd16/rd16 mice reveal
defective olfactory transport of G proteins leading to anos-
mia [90] and deafness caused by cochlear hair cell dys-
function [31]. A possible mechanism of photoreceptor cell
death in Cep290rd16 mice may involve abnormal accumu-
lation of RKIP, the Raf-1 kinase inhibitor, which inhibits
cilia formation [91]. Examination of the retinal phenotype
of Rkip-knockout mice should shed further light on this
question [170]. The Cep290rd16 allele is probably hypo-
morphic, given the expression of the protein with an in-
frame deletion and a milder phenotype. Based on the
human data, a null allele of Cep290 is expected to have a
severe, full-spectrum ciliopathy phenotype, which has
recently been confirmed in mice (Rachel RA, Yamamoto
EA, Dong L, Swaroop A, unpublished data).
In contrast to CEP290, RPGR mutations primarily

cause retinal degeneration (with a few leading to syn-
dromic phenotypes) [171-173]. The RPGR gene produces
multiple alternatively spliced transcripts [174-176], all of
which encode an N-terminal RCC1-like domain that is
structurally similar to the RCC1 protein [177]. One major
constitutive isoform spans exons 1 through 19 (RPGRex1-19)
and carries a C-terminal isoprenylation site [178]. The
other major variant contains exons 1 to 14 and termi-
nates with a large, alternative ORF15 exon (RPGRorf15)
[128]. The RPGR-ORF15 isoform is expressed predomin-
antly in photoreceptors [92] with some exceptions [179],
concentrated in the connecting cilia [95], and appears to
be the functionally important in the retina as all disease-
causing mutations are present in this variant [129,172,180].
Conventional gene targeting that disrupted the RCC1-like
domain abolished the expression of both types of var-
iants in Rpgr-knockout mice [95]; however, unlike human
patients, the retinal degeneration in this mutant is slow
despite defective localization of opsins to photoreceptor
outer segments. An abbreviated form of Rpgr-orf15 trans-
gene seems to reverse the disease phenotype in this line
[94]. A naturally occurring mutant mouse (rd9) was shown
to affect only the orf15 exon of the Rpgr gene [149],
mimicking a majority of human patients. The retinal
degeneration in the rd9 mutation is also somewhat slow.
Interestingly, a recently reported mouse conditional knock-
out (cko) mutant exhibited relatively earlier onset of retinal
disease compared to Rpgr-ko and rd9 [150]. The pheno-
types in these mouse mutants are closer to what is expected
in patients with RPGRorf15 mutations [150,172,180].
Mouse models have been generated for RPGR and

CEP290 interactors and related ciliary proteins such as
RPGRIP1, NPHP and BBS proteins (Figure 3). Retinal de-
generation has been demonstrated in all of these models
(Table 2). The retina in these mice reveal ultrastructural
defects and provide insights into how cilia proteins con-
tribute to ciliogenesis, the sequence of events in ciliogen-
esis, and functional interactions among specific proteins.
Moreover, we can evaluate the effects of an individual al-
lele on a uniform genetic background in mice. Such a fea-
ture allows the engineering of triple and quadruple
mutants on a less variable genetic background to enable
examination of the contribution of each allele to the
phenotype [31,181]. Unexpectedly, such studies have begun
to reveal surprising results. Rather than combinations of
ciliopathy alleles necessarily resulting in a more severe
phenotype, genetic findings reveal more complex relation-
ships among different ciliary proteins. For example, loss of
Dync2h1, involved in retrograde cilia trafficking, disrupts
Sonic hedgehog signaling and cilia formation, yet combin-
ing this mutation with heterozygous loss of Ift172, an



Table 2 Mouse models of ciliopathies with retinal degenerationa

Gene symbol References for
mouse model

Retinal phenotype Interactorsb PR domain
expressed

MAK [79] 60% ONL left at 1 month, 30% at 6 months Axoneme

KIF3A [130,131] Intermediate rate of degeneration; 20% of wild-type ONL thickness by 10 to 12 weeks DISC1, MAP3K11, PLEKHA5, USP7,
PPP1R15A, RPGR

Axoneme

RP1 [132-136] Slow retinal degeneration; ~40% left at 6 months APC, MAPRE2, MAPRE3, NIF3L1, POLE Axoneme

CEP290 [30,89,137] Rapid retinal degeneration; ciliogenesis defects depending on strain RPGR, IFT88, PCM1, DCTN1, BBS4,
MAPK10, GNG13

CC/TZ

AHI1/Jouberin [83,138,139] Rapid – starting to go by P12; only 2 to 3 ONL rows by P24. Very few if any OS/IS SMYD2 CC/TZ

TMEM67/MKS3 [140] Early and rapid retinal degeneration MKS1 CC/TZ

IFT88/TTC10
Tg737

[106,141] Similar to Cep290rd16 – failure of outer segments to elongate RPGR, PRRC2A, SMNDC1, PAN3, SLC9A8 CC/TZ

KIF7 [110,142] Retina not examined; mice die perinatally USP22 CC/TZ

LCA5 lebercilin [85] Rapid degeneration; between P12 and P28, reduced to 2 to 3 ONL rows. CC develops but
little if any OS material.

GRIN2B, OFD1/JBTS10, IFTs CC/TZ

RP2 [84,143-145] Only information on function of the protein in transport within cells UNC119, ARL3, YWHAB, APLP2 CC/TZ

RPGRIP1 [146,147] Only three rows of ONL nuclei by 3 months of age. Overproduction of outer segments RPGR, NPHP4, TFE3, SRPX, CEBPA CC/TZ

TCTN1 [148] Retina not examined; mice die prenatally MKS1, TMEM216, TMEM67, CEP290, B9D1,
TCTN2 AND CC2D2A.

CC/TZ

RPGR [93,95,149,150] Slow retinal degeneration CEP290, RPGRIP1, IFT88, KIF3A, RAB8A CC/TZ, BB

ALMS1 [151-154] Slow degeneration – slight reduction in ONL thickness at 24 weeks; loss of OS over time; still
some left at 24 weeks by rhodopsin staining

MEGF1, OFD1, TUBGCP2, TUBGCP3,
TUBGCP4, CEP290(MS)

BB

ARL6/BBS3 [155] Medium-slow retinal degeneration; hydrocephalus BBS1, ARL6IP1, ARL6IP5, ARL6IP4, ARL6IP6 BB

BBS1 [87,156] Slow degeneration (3 to 4 rows of ONL nuclei at 6 months); CC present but disrupted OS BBS9, EEF1A1, ALDOB, ARL6/BBS3, PCM1 BB

BBS2 [157,158] Slow degeneration – half ONL at 5 months; almost no ONL nuclei by 10 months. OS have
typical indistinct, wavy pattern

EEF1A1, ALDOB, BBS7, BBS9 BB

BBS4 [156,159-161] Intermediate rate of retinal degeneration; 2/3 of ONL remaining at 6 weeks; all PR lost by an
unspecified adult age

PCM1, ALDOB, DCTN1, EEF1A1, EPAS1 BB

TTC8/BBS8 [162] Slow degeneration – ONL half-thickness in the ‘adult’. OS maybe longer than wild-type BBS9, PCM1, BBS4, BBS1, BBS2 BB

MKKS/BBS6 [74,163] Medium-slow degeneration; bulging, disorganized OS CEP290, PTN, STK16, TGIF1, ICA1 BB and
proximal rootlet

RAB8A [164] Retinal phenotype has not been examined or published RPGR, RABIF, BAG6, OCRL, RAB10, PQBP1 BB

TRIM32/BBS11 [165] Retinal phenotype has not been examined or published ATXN1, UBE2N, SFN, UBQLN4, UBE2V1 N/A

BB, basal body; CC/TZ, connecting cilium/transition zone; ONL, outer nuclear layer; OS/IS, outer segments/inner segments; P, postnatal day; PR, photoreceptors. aSelection criteria for inclusion in Table 2: ciliopathy-
related (even if no human disease has yet been described); and interaction with Rpgr or Cep290; and/or associated with retinal degeneration.
bData in this column are taken primarily from entries in genecards.org. Genes in bold are CEP290 and/or RPGR interactors.
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anterograde motor, results in a milder phenotype. A priori
this would suggest that neutralizing two opposite forces
restores equilibrium; however, reduction of the Ift122 retro-
grade motor also represses the Dync2h1 phenotype [181].
Another indication of complexity in the biogenesis and
function of cilia comes from the interaction of Cep290 and
Mkks, a BBS chaperonin protein. In this scenario, loss of
Mkks ameliorates the sensory cilia defects in Cep290rd16

mutant mice, and vice versa [31]. Together these findings
suggest a dynamic and delicate equilibrium among oppos-
ing forces in cilia function.
Mouse models with long-term photoreceptor survival

and intermediate rates of disease progression should pro-
vide optimal opportunities for designing and evaluating
therapies. Those with extremely rapid degeneration may
not allow sufficient time for gene-based or cell-based ther-
apy to show benefit (see, however, results on Aipl1ko/ko

[29]), whereas those with very slow degeneration are
impractical because of the required time and resource
commitment. The Rpgr-cko and Nrlko/ko/Cep290rd16/rd16

double mutants display appropriate characteristics for
designing treatments of retinal disease caused by RPGR
and CEP290 mutations. Nrlko/ko/Cep290rd16/rd16 mice have
the Cep290rd16 mutation on the background of an all-
cone photoreceptor retina due to the loss of Nrl; in this
model, the cones survive longer than rapidly degenerating
rods, allowing a longer window for treatment [89]. The
Rpgr-cko model displays retinal degeneration that begins
during the first months of life, allowing time for treat-
ment options to be tested and evaluated [150].
For most ciliopathies, mouse models fail to completely

recapitulate the human phenotype. For example, mouse
Rpgr mutants exhibit a milder phenotype. At least nine
genes have been identified as underlying Usher syn-
drome; yet most mouse mutants (except whirlin and
usherin that cause type II Usher syndrome) bearing one
of these mutations develop hearing deficits but not vis-
ual dysfunction [182]. In addition, many BBS mouse
models do not, in general, develop polydactyly, unlike
their human counterparts.

Sources of complexity in ciliopathy classification
Confusion in the nomenclature of ciliopathies originates
from pleiotropy of phenotypes and from variations
introduced at multiple levels, including transcriptional/
translational regulation, protein–protein interactions, and
cellular function. Tissue-specific expression of different
splice variants or protein isoforms and their subcellular
localization contribute to this complexity (see Figure 2), as
in the case of RPGR [99,183]. If a gene is required for cilia
formation or function in all tissues, one would expect a
full-spectrum ciliopathy or prenatal lethality. However,
functional redundancy and tissue/cell type selectivity (for
example, of RPGRorf15 transcript primarily in photore-
ceptors) would result in a more restricted phenotypic
spectrum that is also susceptible to modifier effects. In
the sense that a complete disruption of ciliogenesis is
incompatible with life, many ciliopathy genes would appear
to be only partially required for ciliogenesis or function.
Different alleles of the same gene (null vs. hypomorph vs.
dominant negative) might exhibit varying severity because
of the specific functional modules that are impacted
[168,169,184]. Functional redundancy in genes causing a
specific syndrome and phenotypic overlap among syn-
dromes contribute greatly to complexity (Figure 1 and
Table 2) [185]. Modifier genetic variants that do not cause
disease on their own could modulate phenotypic spectrum
of a disease-causing allele in a genetically diverse (outbred)
population (such as humans) by combining alleles of dif-
ferent genes [103,138,169,186]. This phenomenon seems
to occur in particular with BBS [187-190].
Basing diagnosis on a combination of molecular defin-

ition and clinical symptoms can help as it would clear up
some of the confusion resulting from diagnosis based
strictly on phenotypic manifestations. Some ciliopathies are
caused by mutations in genes that are primarily associated
with non-ciliopathy syndromes (for example, TRIM32/
BBS11, NPHP3, and KIF7). These genes are specifically
associated with pathology in certain organs; for example,
NPHP3 is associated with renal–hepatic–pancreatic dys-
plasia, BBS11/TRIM32 causes limb girdle muscular dys-
trophy, and KIF7 causes acrocallosal syndrome – none of
these is considered a ciliopathy. Additionally, different
signaling pathways and mechanisms may operate in dis-
tinct tissues. Exceptions also exist to the rule of motile
cilia having a 9 + 2 microtubule configuration and sensory
cilia having a 9 + 0 structure [191]. Identifying these vari-
ous sources and levels of complexity are essential. NPHP
and SLSN both have kidney disease, but SLSN includes
retinal degeneration; however, some patients with NPHP
also have retinal disease. Mutations in only two proteins
causing NPHP are so far known to also cause SLSN – that
is, only mutations in those two proteins, SDCCAG8 and
NPHP4, can cause RP/LCA symptoms in addition to iso-
lated renal pathology (Figure 1). Examining whether these
two proteins have retina-specific isoforms would be of
interest.

Perspectives and future directions
In this review we have discussed differences between
human ciliopathies and their respective mouse models,
focusing on CEP290, RPGR and their interactors. We
have highlighted the importance of distinct compartments
within cilia showing unique patterns of protein expression
and their frequent interactions with proteins in the same
or adjacent compartments. Given the complexity of these
interactions, precise localization and function of each
protein should provide valuable insights and testable
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hypotheses related to disease mechanisms. We believe
that uniform analysis of tissue expression patterns is crit-
ical for elucidating the role for each gene in the retina
and other relevant cell types. Expression of each isoform
should be determined relative to a distinct ciliary com-
partment. At this stage, it is unclear for most cilia pro-
teins whether a specific isoform is expressed in the same
ciliary compartment in each tissue/cell type and whether
similar mechanisms and signaling pathways are involved.
Standard identifiers should thus be used to illustrate vari-
ous ciliary components in colocalization studies. Com-
monly used markers are acetylated α-tubulin and RP1 for
the distal cilium and more proximal structures, γ-tubulin
for the basal body, Ush2 for the periciliary ridge complex,
and rootletin (Crocc) for striated rootlets. Standardizing
the data collected for each mutant and in every affected
tissue/cell type will allow comparative functional analysis
of specific genes. Documenting the histology of the retina
with emphasis on the photoreceptor layer is required at
distinct stages of degeneration. Electron microscopy in
longitudinal sections and cross-sections of the junction
between inner and outer segments would be helpful in
determining the defects caused by mutations in a specific
protein or isoform (see Figure 2). Moreover, a detailed
expression pattern with respect to previously defined
proteins of specific ciliary compartments will allow more
precise localization.
As awareness has grown of the pivotal role of cilia in

sensory signaling, various questions persist. Are activated
signaling pathways specific for each ciliated tissue or cell
type? Do similar multiprotein complexes play similar roles
in various tissues? For example, does the composition
of BBSome and NPHP–JBTS–MKS complexes [192,193]
change in response to microenvironment or required cel-
lular functions in cultured cells versus different tissues?
What causes variability in genotype–phenotype correla-
tions? For example, why do only some BBS gene muta-
tions cause both BBS and isolated retinal dystrophy
(Figure 1)? Why do only selected NPHP genes additionally
cause retinal dystrophy? Do such mutations provide infor-
mation about which domains of each protein may have
tissue-specific functions? CEP290 and RPGR co-localize
and both cause LCA/RP. Why then is only CEP290 asso-
ciated with other syndromic ciliopathies even though
RPGR is ubiquitously expressed?
Next-generation sequencing and new proteomics-based

approaches are likely to have a major impact on the
progress in this field. First, detailed analysis of ciliary
localization for each protein in cultured cells and in
specific tissues with relevant markers of distinct compart-
ments will refine our understanding of cilia structure and
function. Ultrastructural evaluation of photoreceptor basal
bodies and connecting cilia and in other ciliated cells in
mouse models will provide key information about the
role of each protein. With the identification of clusters
of interacting proteins [193,194], these interaction net-
works can be used to define relevant signaling cascades
and final common pathways using biochemical and
genomic techniques. A better elucidation of ciliary pro-
tein networks, their precise functional interactions and
downstream signaling events would be relevant for
designing therapeutic approaches that are applicable to
multiple ciliopathies and pertinent for more than one
specific mutation.

Conclusions
Linking clinical diagnosis and nomenclature of ciliopathies
with molecular identification depends on understanding
how mutations in individual cilia genes contribute to dis-
tinct clinical phenotypes. This remains an important area
of investigation. Using CEP290 and RPGR as examples of
central proteins in the connecting cilium of the photo-
receptor, we discuss the clinical phenotypes of mutations
in these genes and in those of their interactors to illustrate
this principle. We draw attention to the important con-
clusion that the cilium is comprised of four distinct com-
partments, each with discrete localization of proteins. By
mapping the known interacting partners for CEP290 and
RPGR, we find that hubs and disease networks, such as
NPHP, BBS, and others, are concentrated in a single ciliary
compartment, yet interact with members of other net-
works in adjacent compartments. A remaining mystery is
to understand the significance of discrete localization of
proteins (such as intraflagellar transport proteins) that are
known to function across compartments, and the manner
in which discrete networks (such as BBS and NPHP) inter-
act with each other. These insights provide clues to the
sources of complexity and confusion in the study of cilio-
pathies. We summarize by suggesting avenues of future
pursuit that will clarify and expand the current knowledge
in the field.
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