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Abstract

Primary cilia have been previously linked to the central regulation of satiety. The tubby mouse is characterized by
maturity-onset obesity and blindness. A recent paper demonstrates molecular defects in trafficking of ciliary GPCRs
in the central neurons of tubby mice, underscoring the role of ciliary signaling in the pathogenesis of this

monogenic obesity syndrome.

Background

Most neurons in the vertebrate nervous system elaborate
primary cilia. Historically, neuronal primary cilia were
first identified in neuroepithelial progenitor cells project-
ing into the neural tube lumen. Later on, they were
described to be broadly present both in neurons and glia
[1]. The primary cilia function as sensory antennae in a
wide variety of cells. Cilia-localized receptors, which in-
clude certain G protein-coupled receptors (GPCRs), and
their downstream effectors, determine the sensory mo-
dality of cells in specific contexts, especially during ver-
tebrate photoreception or olfaction and for responding
to morphogens, such as Sonic hedgehog (Shh). Although
we have come to appreciate the function of the primary
cilium in other tissues and organisms, the functional
roles of this ubiquitous neuronal organelle in integrating
neuroendocrine signals have remained enigmatic. Dis-
eases resulting from disruption of primary cilia and the
associated basal body complex, called ciliopathies, often
have strong neurological components, emphasizing the
role of this cellular compartment in neural development
[2]. Interestingly, aside from the strong neurodevelop-
mental phenotypes, progressive obesity often affects
patients with certain ciliopathies such as the Bardet-Biedel
Syndrome (BBS) and Alstrom Syndrome [3]. Notably,
conditional knockout of components of the cilia in the
mice hypothalamus results in hyperphagia-induced obesity
and underscores the role of ciliary signaling in the central

* Correspondence: Saikat. Mukhopadhyay@utsouthwestern.edu

'Department of Research Oncology, Genentech Inc, South San Francisco, CA
94080, USA

’Department of Cell Biology, UT Southwestern Medical Center, 5323 Harry
Hines Boulevard, Dallas, TX 75390, USA

( BioMVed Central

regulation of satiety [4]. Thus, it is imperative to achieve a
better understanding of the ciliary signaling pathways in
central satiety networks, which could lead to novel ways
for treating the global obesity pandemic.

The tubby mouse was initially identified as a spontan-
eous maturity-onset obesity syndrome [5], and positional
cloning strategies in the 1990s mapped the causative
mutation to a novel gene of unknown function called
Tub [6,7]. In nematodes, tub-1, the canonical Tub
homolog was identified in an RNAi screen for fat storage
defects [8], and was found to be expressed in the ciliated
neurons [9], highlighting the role of neuroendocrine sig-
nals in maintenance of systemic fat homeostasis even in
these distant evolutionary relatives. Thanks to a recent
paper from Sun et al. [10] the tubby mouse can now be
added to the growing list of monogenic obesity syn-
dromes with a strong ciliary functional component in
the central nervous system [3]. The authors demonstrate
molecular defects in ciliary GPCR signaling in the tubby
mice, suggesting the importance of ciliary GPCR traffick-
ing in central neurons implicated in satiety circuits.

The authors show that in the tubby mice, the primary
cilia in the neurons show no obvious structural defects.
However, two ciliary GPCRs, melanin-concentrating hor-
mone receptor 1 (Mchrl) and somatostatin receptor sub-
type 3 (Sstr3), known to localize to distinct regions of the
brain [11,12], are strongly prevented from trafficking to
the primary cilia. This phenotype is strongly reminiscent
of a previous study showing defective ciliary targeting of
these receptors in BBS mice [12]. Similar to the BBS mice,
the tubby mice also display retinal degeneration, and a
defect in trafficking of rhodopsin to the outer segment of
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the photoreceptor, an extension of the connecting cilia in
these cells. However, in distinction from the BBS mice that
have defective olfactory cilia and are anosmic [13], tubby
mice do not show defects in either the structure of these
specialized cilia or in localization of olfactory GPCRs. This
difference could be because Tub is not expressed and does
not play a major role in these specific neurons, or because
the presence of other tubby family homologs (such as
Tulp3) compensates for the loss of Tub activity. The
authors also detect the defects in ciliary GPCR trafficking
well in advance of the development of obesity and retinal
degeneration, implying that these trafficking defects could
be causative for the development of these phenotypes.
How does Tubby affect ciliary GPCR trafficking? The
Tub gene is the founding member of a family of proteins
[14], characterized by a C-terminal tubby domain, which
is highly specific for binding to 4,5 phosphoinsositides
(PIP,) [15]. This domain is likely to participate in bind-
ing to specific membrane compartments, which for
Tubby may be the ciliary membrane. Some of the tubby
family members (including Tub, Tulp2 and Tulp3) also
have a signature motif in the divergent N-terminus that
binds to the core subunits of the ciliary intraflagellar
transport complex-A (IFT-A) [16]. Tulp3 mutant mice
are embryonic lethal by mid-gestation [17], but previous
in vitro studies with heterologous cultured ciliated cell
lines suggested that both Tulp3 and IFT-A core subcom-
plex direct GPCR trafficking to the cilia [16]. Careful muta-
tional analysis of both the IFT-A binding N-terminal and
PIP,-binding C-terminal domains suggest that both the
IFT-A- and membrane phosphoinositide-binding proper-
ties of TULP3 are necessary for ciliary GPCR localization.
TULP3 thus bridges the IFT-A complex to the membrane
compartment in gating ciliary GPCR trafficking, al-
though the specific mechanism of ciliary GPCR re-
cruitment remains to be determined. Most importantly,
in the context of neuronal ciliary GPCR trafficking, the
Tulp3 N-terminal fragment can act as a dominant nega-
tive reagent, preventing GPCR trafficking in cultured hip-
pocampal neurons [16]. Tub also shares the IFT-A
binding motif with Tulp3, and binds to the IFT-A complex
[16], although possibly less efficiently. Thus, similar to
Tulp3, Tub could be directing ciliary GPCR trafficking
through its simultaneous binding to the IFT-A complex,
and membrane phosphoinositides. Presumably, higher
levels of Tub in the brain could compensate for the lower
binding or weaker affinity of Tub for the IFT-A complex.
According to the Allen Brain Atlas, hypothalamic Tub
transcript levels are about 26 times that of Tulp3. How-
ever, Tub/IFT-A might also require additional factors. Be-
sides, the dominant negative IFT-A-binding N-terminal
fragment of Tulp3 would be expected to inhibit both
Tulp3 and Tub binding to the IFT-A complex in these
neurons, effectively shutting down complementary effects
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of these proteins in trafficking ciliary GPCRs. Thus, based
on the spatial and temporal expression of these specific
tubby family proteins in different tissues, and their affinity
for the IFT-A complex, we might expect to observe a dif-
ferential effect in their relative capacities for gating ciliary
GPCRs. These differences could create a combinatorial
code by utilizing an identical molecular mechanism for
fine-tuning levels of ciliary receptors.

A suggestion implicit in the authors’ findings is that
the GPCR trafficking defects into the neuronal cilia,
especially Mchrl, could underlie the obesity phenotype
in the tubby mice. Mchrl, the receptor for melanin-
concentrating hormone (MCH), is involved in the regu-
lation of feeding and energy balance [18,19]. However,
Mchrl knockout mice are lean [18,19], whereas MCH
overexpression results in obesity [20]. Thus, in the sim-
plest model, Mchrl trafficking defect to the cilia should
mirror its effect on energy balance and cause leanness,
rather than obesity, as evident in the tubby mouse. Dis-
secting the downstream effectors of Mchrl in regulating
energy balance could address the conflicting effects of
Mchrl trafficking on obesity. The best downstream ef-
fector implicated in neuronal satiety pathways is the ade-
nylyl cyclase, type 3 (ACIII). Mice deficient in ACIII
become obese with age, suggesting that ACIII-mediated
cAMP signals are critical in the hypothalamus [21]. In
line with this observation, downstream effectors of
MCHRI1 signaling include multiple G proteins including
G;, G, and Gq [22]. Thus, MCHR1 inhibits cAMP pro-
duction stimulated by forskolin and increases intracellu-
lar Ca** levels. However, in metabolically active brain
slices, it paradoxically increases extracellular signal-
regulated kinase (ERK) phosphorylation to levels above
those observed with forskolin alone [23]. Thus, the syn-
ergistic effects of Mchrl signaling on cAMP, Ca**, and
ERK phosphorylation could be important in determining
the final outcome on promoting energy intake.

Another possibility is the role of additional ciliary
GPCRs in neuronal satiety centers, and a combination of
trafficking defects of these receptors could result in the
final maturity-onset obesity phenotype. For example,
other neuronal GPCRs such as D1, D2, and D5 dopa-
mine receptors are also expressed in neuronal cilia [24],
and were not examined in this study. Besides, it is im-
portant to note that our catalog of GPCRs expressed in
neuronal cilia is mostly incomplete. Thus, although the
exact molecular explanation for obesity in the tubby
(and BBS) mice is far from clear, we still favor the hypoth-
esis that mislocalization of other novel, yet-unidentified
GPCRs could provide us with a more complete an-
swer in the future. Nevertheless, the final acid test for
dissecting the role of ciliary trafficking of these indi-
vidual receptors on neuronal phenotypes would entail
detailed engineering of knock-in mice, expressing ciliary
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localization-defective variants into the endogenous ge-
nomic loci of these receptors.

Another central question is the means by which ciliary
signaling impacts neurons, and the reason why neurons
need this signaling organelle in the first place. Currently,
this is best answered in the case of morphogenetic devel-
opmental processes involving Shh signaling, which
impacts neuronal differentiation both during embryo-
genesis and later stages. For example, Shh signaling in
the cilia is fundamentally important in the neural pro-
genitor cells during neural tube patterning [25]. Many of
the Shh signaling components are localized to the cilia-
basal body complex, and downstream signaling mediated
by protein kinase A (PKA) and Gli3 processing are intri-
cately linked to this organelle. In a broader developmental
context, primary cilia are also fundamentally important in
neurogenesis in cerebellar granule neurons [26,27], hippo-
campal neurogenesis in the dentate gyrus (DG) [28,29],
adult DG neural stem cells [30], and in cerebral cortical
development [31,32]. At least, in some of these neuronal
cells, the primary cilium probably acts as a subcellular
compartment for efficiently amplifying extracellular Shh
signals for intracellular signal transduction. However, nei-
ther tubby nor BBS mice demonstrate gross defects in the
neuroanatomical networks that regulate satiety, suggesting
by extension that a lack of GPCR trafficking in these neu-
rons probably would not cause apparent deficits during
development of these circuits.

Apart from the role of cilia in Shh signaling and differ-
entiation, recent studies have begun to provide intri-
guing molecular insights into other neuron-dependent
processes dependent on the presence of cilia, and similar
mechanisms could impact the satiety networks in a cilia-
dependent manner. First of all, primary cilia function in
glutamatergic synaptic integration of adult-born neurons
[33]. Conditional deletion of cilia from adult-born neu-
rons induces severe defects in dendritic refinement and
synapse formation, which is partially correlated with an
enhancement of Wnt and P-catenin signaling [33]. Sig-
naling in the context of primary cilia could thus eventu-
ally impinge upon the subsequent efficient integration of
neurons into neural networks. Second, primary ciliary
signaling has also been shown to have an effect on long-
term potentiation (LTP) and plasticity [34]. Sstr3 signal-
ing in the hippocampus is important in novelty detection
in mice, and adenylyl cyclase/cAMP-mediated LTP is
impaired in hippocampal slices from the Sszr3 knockout
and upon addition of Sstr3 antagonists into wild-type
sections. In this case, cilia could act as coincidence
detectors and affect synaptic plasticity by affecting down-
stream signaling pathways. On a similar note, dopamine
produces a synapse-specific enhancement of early LTP
through D1/D5 receptors and cAMP signaling [35]. Fu-
ture work is needed to establish if efficient targeting of
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these receptors to the neuronal cilia is important in these
processes. Identifying downstream pathways regulating
synaptic plasticity particularly promises to be an import-
ant future avenue of research for understanding the puz-
zling role of cilia in neuronal function.
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