
Cognard et al. Cilia  (2015) 4:10 
DOI 10.1186/s13630-015-0019-8

RESEARCH

Comparing the Bbs10 complete 
knockout phenotype with a specific renal 
epithelial knockout one highlights the link 
between renal defects and systemic inactivation 
in mice
Noëlle Cognard1,2†, Maria J Scerbo1†, Cathy Obringer1†, Xiangxiang Yu1, Fanny Costa1, Elodie Haser1, Dane Le1, 
Corinne Stoetzel1, Michel J Roux3, Bruno Moulin2, Hélène Dollfus1,4 and Vincent Marion1*

Abstract 

Background: Bardet–Biedl Syndrome (BBS) is a genetically heterogeneous ciliopathy with clinical cardinal features 
including retinal degeneration, obesity and renal dysfunction. To date, 20 BBS genes have been identified with BBS10 
being a major BBS gene found to be mutated in almost 20 percent of all BBS patients worldwide. It codes for the 
BBS10 protein which forms part of a chaperone complex localized at the basal body of the primary cilium. Renal 
dysfunction in BBS patients is one of the major causes of morbidity in human patients and is associated initially with 
urinary concentration defects related to water reabsorption impairment in renal epithelial cells. The aim of this study 
was to study and compare the impact of a total Bbs10 inactivation (Bbs10−/−) with that of a specific renal epithelial 
cells inactivation (Bbs10 fl/fl; Cdh16-Cre+/−).

Results: We generated the Bbs10−/− and Bbs10 fl/fl; Cadh16-Cre+/− mouse model and characterized them. Bbs10−/− 
mice developed obesity, retinal degeneration, structural defects in the glomeruli, polyuria associated with high circu-
lating arginine vasopressin (AVP) concentrations, and vacuolated, yet ciliated, renal epithelial cells. On the other hand, 
the Bbs10 fl/fl; Cadh16-Cre+/−mice displayed no detectable impairment.

Conclusions: These data highlight the importance of a systemic Bbs10 inactivation to trigger averted renal dysfunc-
tion whereas a targeted absence of BBS10 in the renal epithelium is seemingly non-deleterious.
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Background
Bardet–Biedl syndrome (BBS) [1] is an autosomal reces-
sive ciliopathy for which 20 genes (BBS1-20) have been 
identified to date. It is clinically characterized, among 
features, by early-onset retinitis pigmentosa (RP), obesity 

and renal dysfunction as well as polydactyly, RP is a rod–
cone dystrophy [2], leading to progressive visual loss and 
blindness [3]. The connecting cilium of photoreceptors, 
a highly specialized primary cilium [3, 4], plays a pivotal 
role in intraciliary transport (ICT) between the inner 
and outer segments [5]. The established mechanism 
behind this phenotype is an excessive accumulation of 
protein in the inner segment (IS) of the photoreceptor 
due to defect in intracellular transport (ICT) [6, 7] trig-
gering an unfolded protein response-mediated apop-
tosis of the photoreceptors [8–10]. In parallel, obesity 
develops together with the RP [2] and is associated with 
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hyperleptinemia. The high circulating concentrations of 
Leptin observed both in patients [11] and mouse models 
[12, 13] have historically been linked to a hypothalamic 
defect in the regulation of food intake leading to hyper-
phagia and decreased energy expenditure [12]. More 
recently, BBS proteins have been shown to play a key role 
in the adipose tissue maturation and function [14] which 
strongly suggest that multiple pathways could be driving 
the BBS-obese phenotype.

Compared to RP and obesity, BBS-induced renal 
impairment after birth tends to display a late-onset pro-
file as it is generally detected in the late childhood. This 
major cause of morbidity and mortality for the BBS 
patients is characterized by an initial urinary concen-
trating defects associated with polyuria–polydypsia [15]. 
Concomitantly, scores of structural abnormalities like 
small kidneys with normal or irregular contours and 
reduced parenchyma thickness, calyceal distortion, club-
bing and blunting, caliectasis, presence of medullary 
cysts communicating or not with mildly dilated calyceal 
system and occasional presence of cortical cysts have 
been reported and they represent the full clinical spec-
trum of the BBS renal phenotype [16]. To explain these 
BBS renal phenotypes several defective signalling path-
ways have been incriminated such as a defective WNT 
signalling cascade during development [17, 18] as well as 
the lack of ciliary targeting of the antidiuretic hormone 
arginine vasopressin (AVP) isoform 2 receptor (AVPR2). 
In combination to these intrinsic effects of BBS inacti-
vation, it has been reported that the occurrence of obe-
sity was a leading cause for the presence of renal cysts 
in mice; an effect which was reverted when they went 
through food restriction [18]. Although the results high-
light the difficulty in identifying the exact pathological 
mechanism leading to renal dysfunction in the BBS, in an 
attempt to understand the precise impact of BBS inacti-
vation in the ciliated renal epithelium, we generated the 
Bbs10−/− mice and the Bbs10  fl/fl; Cadh16-Cre+/− and 
studied the resulting phenotypes.

Methods
Generation of Bbs10 total knockout mice and Bbs10 renal 
epithelial‑specific knockout mice
All experimental procedures were approved by the local 
ethical committee of Strasbourg. See Additional file  1: 
Supporting information for supplementary methods. The 
inactivation of the Bbs10 gene was achieved by the dele-
tion of the exon 2. Bbs10 fl/fl mice were obtained by DNA 
recombination, using LoxP sites flanking the 5′ and 3′ 
regions of the exon 2 in Bbs10 gene in embryonic stem 
cells line 129OLA using a neomycin cassette as a selectable 
marker (Additional file 2: Figure S1). These mice were bred 

with Cadh16-CreDeleter mice (B6.Cg-Tg (Cadh16-Cre) 
91Igr/J, stock number 012237 from Jackson). Homozy-
gous knockout mice Bbs10−/− and the control litter-
mates Bbs10+/+ were obtained by mating of heterozygous 
Bbs10+/−mice. Chimeric mice were obtained on a C57/
BL6 genetic background. Bbs10  fl/fl mice were bred with 
the Ksp1.3/Cre transgenic mouse lines expressing het-
erozygous Cre recombinase gene under the control of a 
tissue-specific promoter: Ksp-Cadherin (Cadherin16), 
exclusively expressed in renal tubular epithelial cells [19]. 
The resulting Bbs10  fl/fl; Cadh16-Cre+/− together with 
the Bbs10+/+; Cadh16-Cre+/− mice were generated. All 
the genotypes were checked by PCR using KAPA Mouse 
Genotyping Kit (#KK7302, Kapa Biosystems, Woburn, 
Massachusetts, USA). Primer sequences used for Bbs10 
genotyping were 5′-ACA AAT ACA ATT GAT CAT CGA 
TGT G-3′ (forward primer) and 5′-GTT GCC TGG CTT 
GGG TGG CA-3′ (reverse primer), and 5′-ACC TCC 
CCA CTT GAA CGA GGT CT-3′ (forward) and 5′-GTT 
GCC TGG CTT GGG TGG CA-3′ (reverse) for WT 
and floxed mice. For Cadh16 Cre genotyping, the primer 
sequences used were 5′-GCA GAT CTG GCT CTC CAA 
AG-3′ as sense primer and 5′-AGG CAA ATT TTG GTG 
TAC GG-3′ as antisense primer, and 5′-CAA ATG TTG 
CTT GTC TGG TG-3′ (forward) and 5′-GTC AGT CGA 
GTG CAC AGT TT-3′ (reverse) for the internal positive 
control. Genotyping at the ROSA26 locus of the RosaTo-
mato/eGFP (Gt(ROSA)26Sortm4(ACTB-tdTomato,−EGFP)Luo/J, 
Jackson Laboratories Stock # 007576) mice was performed 
using the following three-primer set: oIMR7318: 5′-CTC 
TGC TGC CTC CTG GCT TCT-3′; oIMR7319: 5′-CGA 
GGC GGA TCA CAA GCA ATA-3′; oIMR7320: 5′-TCA 
ATG GGC GGG GGT CGT T-3′. See Additional file  1: 
Supporting information for supplementary methods.

Results
Molecular characterisation of the Bbs10−/− mice
Using a PCR-based approach, we generated a condi-
tional floxed mice (Bbs10  fl/fl) in which we flanked the 
exon2 on the 3′- and 5′-regions with LoxP sites (Fig.  1a 
and Additional file  2: Figure S1). Total Bbs10 knockout 
mice (Bbs10−/−) were then produced by breeding the 
Bbs10  fl/fl mice with a Deleter-Cre mouse line. Following 
Cre-mediated excision of the Bbs10 allele, the Cre allele 
was removed through breeding the resulting heterozy-
gous Bbs10 mice Bbs10+/−. The Bbs10+/− mice were then 
used for breeding to generate the total Bbs10 knockout 
mice Bbs10−/−, and were subsequently genotyped by PCR 
(Fig. 1b). Bbs10−/− mice display no Bbs10 expression level 
in target tissues like kidney and the eyes (Fig. 1c). Bbs10+/+ 
and Bbs10 fl/fl had no differences in Bbs10 mRNA expres-
sion as can be seen in Additional file 3: Figure S2D.
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Bbs10−/− mice display typical BBS‑obese phenotype
In the perinatal period, Bbs10−/− mice exhibited a runt-
ing phenotype but recovered equivalent body weight 
with the control Bbs10+/+ littermates by 8 weeks of age. 
As from 8 weeks onwards, Bbs10−/− mice gained more 
weight than the Bbs10+/+ (Fig.  2a) and at 3  months, 
the Bbs10−/− mice were overweight (Fig.  2b). Food 
intake measurements revealed that Bbs10−/− mice 
only develop hyperphagia at 8 weeks postnatal (Fig. 2c) 
and presented severe hyperleptinemia at 3  months 
with  circulating leptin concentration of 125  ng/mL 
(Fig.  2d). Despite the obese phenotype, subsequent 
analysis examination of the visceral adipocytes showed 
no significant difference in cellular diameter between 
Bbs10−/− and Bbs10+/+ mice (Fig.  2e). Normal glycae-
mic levels were observed in fasted, unchallenged ani-
mals although a delay in the rate of decrease of glucose 
levels was observed following glucose tolerance test 

(GTT) (Fig.  2f ). Furthermore, insulin sensitivity was 
maintained in Bbs10−/− as demonstrated by the insu-
lin tolerance test (ITT) results; glucose level patterns 
were similar between the Bbs10−/− and Bbs10+/+mice 
(Fig. 2g).

Bbs10−/− mice exhibit retinal degeneration
Bbs10−/− mice, like all reported BBS mouse models 
[3], exhibit severe retinal degeneration. 3-month-old 
Bbs10−/− mice showed retinal thinning observed in 
the Optical Coherence Tomography (OCT) (Fig.  3a) 
and on histological toluidine-stained sections (Fig.  3b). 
Immunostained cryosections of the corresponding reti-
nas (Fig.  3c) for rhodopsin showed correct localisation 
in the outer segment (in green) albeit a markedly clear 
reduction of rhodopsin content in the Bbs10−/− reti-
nas. Transmission electron microscopy (T.E.M.) analy-
sis revealed that the retinal phenotype was primarily 
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Fig. 1 Generating the Bbs10−/− mouse model. a Schematic representation of the targeting strategy for Bbs10 allele. b Genotyping PCR results for 
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due to the loss of the inner and outer segment (IS/OS) 
of the photoreceptors and the outer nuclear layer (ONL); 
although the connecting cilium could still be detected, 
next to the centriole (Fig. 3d, red arrows). This gradual 

loss of the photoreceptors in the Bbs10−/− retinas cor-
related with a significant decrease of the a-wave (Fig. 3e, 
red arrows) and b-wave magnitudes of the scotopic 
electroretinograms (ERGs) in the Bbs10−/− mice. We 
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also found in the retinas of Bbs10−/− mice an elevated 
number of TUNEL-positive nuclei indicating an ongoing 
process of apoptosis in the Bbs10−/− retinas (Additional 
file 4: Figure S3A, B).

Structural renal abnormalities associated with functional 
impairment are observed in Bbs10−/− mice
We next investigated the impact of Bbs10 inactivation 
on the kidneys. In the glomerular region, T.E.M. analysis 
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revealed substantial decrease of the glomerular basement 
membrane thickness combined with an absence of primary 
and secondary podocyte structures (Fig. 4a, b). This struc-
tural defect correlated with significant increase in albumi-
nuria (Fig. 4c) although creatinine clearance was maintained 
in the Bbs10−/− mice (Fig. 4d). As it was reported that BBS 
protein inactivation could impair ciliogenesis [14, 20, 21], 
this prompted us to verify the ciliated status of the tubular 
epithelial cells. Ciliated epithelial cells were readily detected 

in the Bbs10−/− tubular epithelium as depicted by T.E.M 
analysis (Fig.  4e). Further analysis showed correctly polar-
ized epithelial cells for both proximal tubular and distal con-
voluted epithelial cells in the Bbs10−/− kidneys but revealed 
large intracytoplasmic inclusions in the Bbs10−/− epithelial 
cells (Fig.  4f and Additional file  5: Figure S4). No detect-
able cystic lesion were detected and correct targeting of the 
Aquaporin 2 (AQP2) to the apical side of the epithelial cells 
was found in the Bbs10−/− epithelial cells (Fig. 4g).
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Bbs10 fl/fl; Cadh16Cre+/− exhibit no detectable impairment 
in renal morphology or function
Next we generated Bbs10  fl/fl; Cadh16Cre+/− and their 
controls Bbs10+/+; Cadh16Cre+/− and genotyped those 
by PCR approach (Fig. 5a). The Bbs10 fl/fl; Cadh16Cre+/− 
displayed Cre expression in the renal epithelium (Addi-
tional file 3: Figure S2A) and the Cre recombinase activity 

was validated by detecting green fluorescence signal in 
the renal epithelial cells of the Cadh16Cre+/+; RosaTo-
matoeGFP+/+ (Additional file 3: Figure S2B). To further 
establish specific Cre-mediated excision of Bbs10 in the 
renal epithelial cells, we performed an immunodetection 
of BBS10 in the tubular renal epithelial cells and found 
no cells positively stained for BBS10 in the Bbs10  fl/fl; 
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Cadh16Cre+/− compared to control (Additional file  6: 
Figures S6A, B). As Cadh16-Cre expression targets spe-
cifically the renal epithelial cells, no other characteristic 
BBS phenotype like obesity or retinal degeneration was 
observed in the Bbs10 fl/fl; Cadh16Cre+/− mice (data not 
shown). Immunostaining of acetylated-α-tubulin on kid-
ney cryosections showed the presence of ciliated cells 
in Bbs10  fl/fl; Cadh16Cre+/− mice (Fig. 5c) together with 
normal apical targeting of AQP2 in the epithelial cells 
in the Bbs10  fl/fl; Cadh16Cre+/− mice (Fig.  5d). These 
data demonstrate the correct polarization of the BBS10-
deprived renal epithelial cells. Moreover, since we did 
not target the glomerular region with the Cadh16Cre, 
no structural defect was observed in any of the podocyte 
structures of the Bbs10 fl/fl; Cadh16Cre+/− mice (Fig. 5e), 
an effect correlated with normal microalbuminuria lev-
els (Fig.  5f ). Surprisingly, no cytoplasmic inclusion was 
observed in the epithelial cells in both the proximal and 
distal tubular regions (Fig.  5g) and creatinine clearance 
was comparable between the tested groups (Fig.  5h). 
These results indicate that the sole Bbs10 inactivation in 
the renal epithelial cells is not enough to trigger massive 
pathological stress in the renal epithelium.

Systemic Bbs10 inactivation is a prerequisite for the 
classical polyuria phenotype in vivo
The most prominent renal phenotype in BBS patients 
is polyuria; a phenotype which was linked to a defec-
tive AVP signalling cascade. To identify the cellular 
mechanism behind this renal phenotype, we tested the 
Bbs10−/− mice for fluid retention. The mice underwent 
24-h fluid deprivation and the collected urinary volumes 
were analysed. Bbs10−/− mice suffered of increased diu-
resis (Fig.  6a). This increased discharge of urine corre-
lated with a decrease in mRNA expression of aquaporin 
(Aqp2), aquaporin 3 (Aqp3) and Avpr2 (Fig.  6b), nor 
decrease in protein levels of AQP2 and AVPR2 (Fig. 6c). 
Circulating AVP levels revealed a similar drastic increase 
in the Bbs10−/− mice irrespective of fluid intake (Fig. 6d), 
contrasting with the Bbs10+/+ mice that exhibit the nor-
mal physiological response upon the fluid restriction. 
Next, we performed the same series of tests with the 
Bbs10  fl/fl; Cadh16Cre+/− mice, to verify whether the 
specific Bbs10 inactivation could impair AVP signalling 
in the kidneys. Interestingly, neither the 24-h urinary 
volumes (Fig.  6e), nor renal mRNA expression levels of 
AQP2, AQP3 and AVPR2 (Fig.  6f ) nor protein expres-
sion levels of AQP2 and AVPR2 (Fig. 6g) were impacted 
in the Bbs10 fl/fl; Cadh16-Cre+/− mice. Compared to con-
trols, normal physiological AVP response to fluid restric-
tion was observed in the Bbs10 fl/fl; Cadh16-Cre+/− mice 
(Fig.  6h). All together these data demonstrate that the 
specific inactivation of Bbs10 in the renal epithelial cells 

does not induce polyuria and the associated high AVP 
circulating levels.

Discussion
Herein, we describe and compare the phenotypes of 
a Bbs10−/− versus Bbs10  fl/fl; Cadh16Cre+/− mice. The 
Bbs10−/− mice recapitulated most clinical features of 
the human condition, ranging from early-onset obesity, 
retinal degeneration and renal dysfunction whereas the 
Bbs10  fl/fl; Cadh16Cre+/− mice show neither detectable 
renal defect at 3 months nor any other noticeable mani-
festations. The Cadh16 Cre mouse used in this work to 
mediate the specific inactivation of Bbs10 in renal epithe-
lial cells was the Cre Ksp1.3/Cre transgenic mouse. This 
model carries the 1,329  bp fragments of the 5′ flanking 
region of the Ksp-cadherin promoter [19]. Two Cadh16-
Cre mice were developed by the group of Igarashi in 2002 
containing different fragments of the 5′ flanking region of 
the Ksp-cadherin promoter [19], one of the mice carrying 
the 1,329 bp (Ksp1.3/Cre mouse) and the other carrying 
the 324 bp fragment (Ksp0.3/Cre mice). Cre expression in 
Ksp1.3 mice was restricted to the tubular epithelial cells 
in the mature and developing kidney, while the Ksp0.3 
mice produce a variegated expression pattern [19, 22]. 
In this work we used the Ksp1.3/Cre transgenic mice to 
specifically target the tubular epithelial cells of the kidney 
and no other renal cells types. Based on the results pre-
sented here and combined with the use of the specified 
Cre mouse line, it seems that specific Bbs10 inactivation 
in the renal epithelium on its own, may not be suffi-
cient to be deleterious to renal function up to 3 months. 
This being said, we cannot entirely exclude especially in 
absence of a phenotype in the Bbs10  fl/fl; Cadh16Cre+/− 
that this lack of impact on the renal physiology could be 
due to a heterogeneous and variable activity of the Cre 
in vivo; a proof that will require further investigations.

On the other hand Bbs10−/− mice developed progres-
sive obesity associated with hyperphagia and hyper-
leptinemia. The absence of hypertrophic adipose tissue 
at 3  months in both Bbs10−/− and Bbs12−/− mice does 
not support the classical leptin resistance theory lead-
ing to obesity in the BBS (32). In fact, our results follow 
the same line of thought that was suggested by another 
group studying the Bbs4−/− mice. The authors dem-
onstrated that leptin resistance was not a constitutive 
defect but seemingly an acquired one appearing as the 
mice were ageing [13]. Besides, we and others have also 
shown that the inactivation of BBS genes was favouring 
pre-adipocyte lineage [14, 23] and adipogenesis [24]. 
These effects could explain the observed hyperplastic 
adipose tissue as well as the higher circulating levels 
of leptin observed in Bbs10−/− mice (Fig. 2d); a pheno-
type observed in all BBS mouse models and in human 
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patients (15, 16, 31, 30). Moreover, the 3-month-old 
Bbs10−/− mice were not hyperglycaemic but exhibited 
a significant delay in bringing their glucose levels back 

to normal following GTT (Fig. 2f ). Simultaneously, these 
mice showed insulin sensitivity, indicating that the delay 
in glucose handling observed with the GTT was not 
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related to insulin resistance. Interestingly, it has been 
described that leptin could be as effective as insulin in 
controlling glucose levels [25]. It is, therefore, conceiv-
able that the delay in glucose handling observed in the 
Bbs10−/− mice could be due to the hyperleptinemia; 
a hypothesis that warrants further investigations with 
targeted tissue BBS inactivation. In this present study, 
3-month-old mice were used to clearly demonstrate 
that in absence of obesity Bbs10 inactivation has no 
major impact on renal function. Although it might seem 
interesting to have older mice to investigate the effect of 
Bbs10 inactivation at later stages, it then becomes diffi-
cult to dissect the exact contribution of Bbs inactivation 
due to the effects of ageing itself.

Coincidently, the Bbs10−/− mice suffered from RP. 
The retinal degeneration observed in the Bbs10−/− was 
similar to the other previous Bbs mouse models (33, 34, 
29, 27, 19), characterized by the loss of photoreceptors 
resulting in a thinning of the retina and a progressive 
flattening of the ERGs. Of note, is the presence of con-
necting cilium (Fig. 3c). With the complete photorecep-
tor structure, the Bbs10−/− retina highlights the fact that 
BBS10, as was the case for BBS12 [26], is not required 
for ciliogenesis. The observed defect is probably related 
to an impaired ICT from the inner segment to the outer 
segment.

BBS renal phenotype is a mix of different defects of 
the nephron correlating with the variable human renal 
phenotype. We, therefore, investigated the effect of a 
total knockout condition versus a specific renal epithe-
lial inactivation. In the Bbs10−/− mice, the glomeruli 
suffered from the absence of the primary and secondary 
podocyte structures (Fig.  4b) correlating with elevated 
albuminuria (Fig. 4c). Accordingly, no such glomerulop-
athy was present in the Bbs10  fl/fl; Cadh16Cre+/− mice 
(Fig.  5f, g), as the Cre activity was limited to the renal 
epithelial regions (Figure S2B). The primary cilium is 
known to play a role in development of the podocytes 
and that later in life, the podocytes lose their ciliated 
status as the flow gets stronger to prevent excessive 
polycystin-mediated calcium signalling [27]. As the 
observed structural defects in the Bbs10-deprived podo-
cytes seemingly bear a developmental aspect and not 
an acquired one, we hypothesized that BBS10 is crucial 
for proper podocyte development. Surprisingly, human 
BBS patients do not present overt early-onset glomeru-
lopathy but do exhibit decreasing glomerular function 
with age [28, 29]. This discrepancy could result from 
inherent differences between species as exemplified by 
the fact that rodent podocytes seem to be ciliated only 
during development [27] whereas human podocytes 
remain ciliated in fully differentiated and functional 
podocytes [30, 31].

Moreover, cyst was undetectable in both Bbs10−/− and 
the Bbs10  fl/fl; Cadh16Cre+/− kidneys (Figs.  4b–f, 5f–h 
and Additional file 5: Figure S4). This feature shared with 
other BBS chaperone KO mice, namely the Bbs12−/−, 
suggests that chaperone BBS inactivation does not 
impact the planar cell polarization (PCP) of the develop-
ing kidney like other ciliopathies. In addition, proper PCP 
of the Bbs10-deprived renal epithelial cells was further 
evidenced by the presence of primary cilia on the apical 
side of the epithelium (Figs.  4e, 5d) combined with the 
AQP2 apical localisation (Figs. 4h, 5e). Interestingly, only 
Bbs2−/− and Bbs4−/− mice suffered from late-onset cys-
togenesis which was secondary and uniquely associated 
to obesity [32]. Altogether, these data highlight that cyst 
formation is not, per se, intrinsically correlated to BBS 
gene inactivation but could nevertheless favour cystogen-
esis when combined with BBS-induced obesity. Besides 
cytoplasmic vacuoles, an established parameter for cel-
lular stress of the renal epithelium [33] was observed in 
the Bbs10−/− renal epithelial cells but not in the Bbs10 fl/

fl; Cadh16Cre+/− ones (Figs. 4g, 5h). These highlight the 
prerequisite of multiple defects to induce detectable renal 
defects.

Finally, polyuria, the most prominent human renal 
phenotype in BBS was observed in the Bbs10−/− and not 
in Bbs10  fl/fl; Cadh16Cre+/− mice. Given that AVPR2 is 
localized in the primary cilium of renal epithelial cells 
and that BBS protein inactivation in renal cells impairs 
their capacity to respond to AVP and activate their lumi-
nal AQP2 in vitro [15], we measured the protein levels of 
AQP2, AQP3 and AVPR2. No difference in expression 
levels of these proteins were found in both tested mod-
els. This indicates that polyuria in the Bbs10−/− mice is 
not linked to a local decrease in expression levels of these 
proteins (Fig. 6b, c, f, g). The fact that the AVP levels were 
always high in the Bbs10−/− mice, irrespective of the fluid 
intake condition (Fig.  6d), highlights an AVP-resistant 
status in Bbs10−/− mice; an effect which was absent in the 
Bbs10  fl/fl; Cadh16Cre+/− mice (Fig. 6h). Based on these 
findings, we hypothesized that the BBS-induced polyu-
ria is not simply related to the absence of BBS10 in the 
renal epithelium but is the result of more complex inter-
actions between several pathways being impacted in the 
Bbs10−/−. These could be linked to the hypothalamic–
pituitary axis sensing osmolality and secreting AVP com-
pared to the other ciliated cells.

Conclusions
The data presented herein describe the phenotype of a 
new mouse model for one of the most commonly mutated 
genes in BBS human patients, namely BBS10, with spe-
cial emphasis in the kidney phenotype. Our findings 
show that deletion of Bbs10 is able to recapitulate most 
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of the clinical BBS features, whereas the Bbs10  fl/fl; Cad-
h16Cre+/− did not induce any detectable defect. Overall, 
these results highlight once more the complexity of renal 
dysfunction characterizing this emblematic ciliopathy and 
like for the study of the origins of obesity, an integrative 
approach is required to understand and ultimately cure 
these genetic disorders.
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