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Zebrafish: a vertebrate tool for studying 
basal body biogenesis, structure, and function
Ryan A. Marshall and Daniel P. S. Osborn* 

Abstract 

Understanding the role of basal bodies (BBs) during development and disease has been largely overshadowed by 
research into the function of the cilium. Although these two organelles are closely associated, they have specific roles 
to complete for successful cellular development. Appropriate development and function of the BB are fundamen-
tal for cilia function. Indeed, there are a growing number of human genetic diseases affecting ciliary development, 
known collectively as the ciliopathies. Accumulating evidence suggests that BBs establish cell polarity, direct ciliogen-
esis, and provide docking sites for proteins required within the ciliary axoneme. Major contributions to our knowledge 
of BB structure and function have been provided by studies in flagellated or ciliated unicellular eukaryotic organisms, 
specifically Tetrahymena and Chlamydomonas. Reproducing these and other findings in vertebrates has required 
animal in vivo models. Zebrafish have fast become one of the primary organisms of choice for modeling vertebrate 
functional genetics. Rapid ex-utero development, proficient egg laying, ease of genetic manipulation, and affordabil-
ity make zebrafish an attractive vertebrate research tool. Furthermore, zebrafish share over 80 % of disease causing 
genes with humans. In this article, we discuss the merits of using zebrafish to study BB functional genetics, review 
current knowledge of zebrafish BB ultrastructure and mechanisms of function, and consider the outlook for future 
zebrafish-based BB studies.
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Body of the primer
Zebrafish (Danio rerio): what is the basic phylogeny of this 
organism?
The zebrafish has been employed to study not only ver-
tebrate development, genetics, and disease but, due to 
the comprehensive genomic annotation, has also helped 
answer questions of evolutionary diversity and phylogeny 
[1]. In short, zebrafish (Danio rerio), exhibit a toothless 
jaw that classifies them under the Cyprinidae family, with 
other members including carp, barbs, and minnows [2]. 
The Cyprinids themselves fall under the order of Cyprini-
formes, a large and diverse grouping of ray-finned (class: 
Actinopterygii) bony freshwater fishes [3]. The presence 
of a swim bladder for buoyancy, moveable jaw, and sym-
metrical caudal fin classifies zebrafish under the sub-
division (or infraclass) of Teleostei. There are currently 

approximately 26,840 species of Teleosts that represent 
96 % of all living fish species spread across 40 orders, 448 
families, and 4278 genera [4]. The successful evolution-
ary advance of Teleost fishes has been attributed to the 
occurrence of a whole genome duplication (WGD) that 
appeared early in the evolution of ray-finned fish, during 
the divergence from the lobe-finned fish, some 320–400 
million years ago [5, 6]. It is generally accepted that WGD 
created new evolutionary opportunity by increasing 
gene number without affecting gene dosage [6]. Conse-
quently, WGD allowed for the introduction of new loci 
with potentially advantageous functions, accounting for 
genetic redundancy. Whilst WGD created an expansion 
of genetic material and permitted leaps in evolutionary 
advancement, it has complicated analyses of gene func-
tion and phylogeny, especially in the context of human 
disease. Indeed, zebrafish possess at least one orthologue 
of approximately 70 % of all human genes (roughly 40 % 
of which have been duplicated) and 82 % of human dis-
ease causing genes [7]. However, idiosyncrasies taken 
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into account, zebrafish offer a tractable system for study-
ing gene function as indicated by the clear expansion in 
zebrafish functional genetics, notably in recent years, into 
the field of cilia and BB biology.

Basic basal body structure
Consisting of a barrel-shaped centriole tethered to the 
cell membrane, the BB is fundamental in directing cili-
ogenesis, cell polarity, and providing a docking site for 
essential intraflagellar transport (IFT) proteins, required 
for appropriate ciliary function [8–10]. The centriole 
structure is highly conserved across species and is com-
posed of nine triplet microtubules arranged in a cylin-
drical shape [11]. This structure forms the template that 
nucleates the ciliary axoneme. Therefore, correct BB 
construction dictates the development and function of 
the cilium. Much of the pioneering work on BB ultra-
structure comes from detailed transmission electron 
microscopy (TEM) from the unicellular flagellate Chla-
mydomonas and the ciliated protozoa Tetrahymena [12, 
13]. There is, however, very little high-resolution data 
on the ultrastructure of the BB in zebrafish and verte-
brates as a whole. The majority of zebrafish TEM stud-
ies in the field of ciliogenesis have focused on axonemal 
structure of the cilium, which conforms to the nine plus 
two and nine plus zero doublets associated with motile 
and primary cilia, respectively [14]. Therefore, it might 
be speculated that BB structure also conforms to the nine 
triplet microtubular arrangement. Indeed, this is what is 
observed in BBs from modified primary cilia in the eye 
and motile cilia located in the choroid plexus, required 
for cerebrospinal fluid movement, in the brain (Fig. 1a–d) 
[15, 16]. Further conservation of structural function has 
been suggested from closer inspection of the cartwheel 
architecture, which forms the scaffold at the center of 
the BB. Sas-6, which localizes to the cartwheel that is 
required for early BB biogenesis in multiple model sys-
tems [17–20]. Interestingly, zebrafish Sas-6 protein 
has been observed to self-assemble in  vitro into struc-
tures reminiscent of the cartwheel structure, suggesting 
Sas-6 itself is a major contributor to the core structural 
organization at the center of zebrafish BBs [21]. However, 
despite some compelling BB findings in zebrafish, further 
studies focusing on BB ultrastructure need to be con-
ducted to elucidate BB structure variants between organ-
isms and within different tissue types.

Additional basal body structures or accessory structures
Electron microscopy has been fundamental to BB dis-
covery. Descriptive TEM observations of Tetrahymena 
BBs nearly 50  years ago identified structural off-shoots 
that were speculated to be required for BB orientation 
and function [13]. These structures include the rootlet, 

basal foot, postciliary microtubules, transition fibers, and 
kinetodesmal fibers. Whilst the functional roles of these 
accessory structures remain largely unknown, there is 
growing evidence that they play a role in BB orientation, 
microtubular organization, ciliary structural support, and 
anchoring [22–24]. Some of these structures have been 
identified in zebrafish TEM, such as the rootlet, distal 
appendages, transition fibers, and basal foot (Fig.  1a–
d) [16, 25]. However, the zebrafish model has yet to be 
exploited to specifically focus on accessory structure 
morphology and function.

Basal body origins and life cycle
BBs are closely related to centrosomes, they are struc-
turally similar and both act as microtubule organizing 
centers. In fact, they are largely considered the same 
entity that has simply taken on a different cellular role 
post-mitotically, representing an efficient use of cellular 
components. It has yet to be determined when exactly 
in zebrafish development BBs become established. 
However, cilia are first observed during late epiboly, at 
the initiation of convergence and extension when cel-
lular movements form the embryonic germ layers [26]. 
Despite this, it is well documented that the reassignment 
of occupation, from perinuclear centrosomal function 
to the apical membrane for ciliogenesis, occurs across 
species. Distinct cellular cues are likely to co-ordinate 
this event; however, the mechanism of centriole migra-
tion and BB docking to the apical membrane is not fully 
understood. Several studies in zebrafish have helped to 
identify some novel players in this process, including 
the Rac1 nucleotide exchange complex ELMO–DOCK1, 
and the Hippo pathway [27, 28]. Functional knockdown 
of elmo1, dock1, or ezrin1 (components of the ELMO–
DOCK1 complex), using antisense morpholino oligo-
nucleotides, results in morphological defects consistent 
with cilia loss [27]. Morphant embryos display detached 
BBs at the apical membrane and impaired ciliary axo-
neme formation. Similarly, the Hippo pathway transcrip-
tional co-activator yes-associated protein (yap) has been 
shown to be required for appropriate BB arrangement 
and apical membrane docking during zebrafish ciliogen-
esis [29]. Examination of the cross-talk and interactions 
between the proteins proposed to orchestrate correct BB 
migration and docking will help clarify this poorly under-
stood process.

Duplication of BBs occurs during mitosis. In multi-
ciliated cells (MCCs), BB number directly underpins the 
sum of motile cilia, thus proposing the quandary; how do 
multiple BBs form without cell division? Deuterosomes, 
electron-dense structures, are believed to drive centriole 
amplification in MCCs [30]. Deuterosomes have yet to be 
directly observed in zebrafish and it may be speculated 
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that an alternative method for centriole amplification is 
employed here. Indeed, Deuterosome protein 1 (Deup1), 
required for deuterosome-dependent (DD) centriole 
biogenesis, is not present in zebrafish [31]. Interestingly, 
cep63 required for mother centriole duplication (MCD) 
is present in zebrafish [31]. Deup1 and cep63 are known 
to be paralogues with divergent roles in MCC promotion. 
The presence of cep63 but not deup1 in zebrafish suggests 
that Deup1 arose from cep63 and that zebrafish amplify 
their centrioles via MCD, this is likely since zebrafish 
MCC only contain a few cilia [31]. However, what envi-
ronmental cues instruct a cell to start amplifying cen-
trioles? Cells are singled out to become MCC through 
inhibition of notch/delta signaling. Notch regulates Mul-
ticilin that promotes the production of centriolar struc-
tural proteins and foxj1, required for basal body docking, 
cilia formation and motility [32, 33]. In zebrafish, the 

foxj1a (the homologue of the mammalian Foxj1) target 
geminin coiled-coil domain containing (gmnc) has been 
identified to be required for MCC formation [32]. Fish 
with disrupted gmnc fail to generate MCC, lack cells con-
taining multiple BBs and develop cystic kidneys, due to 
the requirement for MCCs to propel filtrate along the 
zebrafish pronephric tubule [32]. This suggests that gmnc 
is a critical regulator of centriole amplification. Thus, a 
cascade of gene regulation is required to promote cen-
triole amplification and ultimately MCC commitment. 
However, the regulated decision to activate this cascade, 
independent of cell division, remains unclear.

Identification of basal body components
Determining the structural protein composition of BBs 
has often been a complex task, mainly due to difficulties 
isolating matrix-embedded centrioles from surrounding 

Fig. 1 a–d Zebrafish transmission electron micrographs highlighting conserved BB structures: nine-triplet microtubule arrangement, TF transi-
tion fibers, DA distal appendages, DAV distal appendage vesicles. a Ultrastructure of the BBs and cilium from the zebrafish brain at 24 hpf. Scale bar 
250 nm. b, c M-centrioles from zebrafish photoreceptors at 50 hpf. Scale bar 250 nm. d Schematic representation of zebrafish BB ultrastructure. e–g 
BBs and cilia can be simultaneously visualized in multiple zebrafish tissue types using GTU88 γ-Tubulin (BB) and acetylated α-Tubulin (cilia) antibod-
ies. Fluorescent immunohistochemistry in the eye (e), pronephric duct (f), Kupffer’s vesicle (g) for BB (green), cilia (red) and nuclei (blue) in 24 hpf (e, 
f) 8 somite (g) embryosReprinted from [15]. Reprinted from [16]
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contaminants for proteomic analysis. In particular, pro-
teins that make up the amorphic pericentriolar mate-
rial (PCM) can often obscure centriole-specific proteins 
[34], However, some clever approaches have been used to 
piece together the ingredients that make up the BB. Sev-
eral studies have taken a comparative genomics approach 
to identify genome differences between ciliated and non-
ciliated species [35, 36]. Whilst this predicts the required 
ciliary components, it does not dissect out BB-specific 
centriolar proteins. A much more direct approach has 
been used in Tetrahymena and Chlamydomonas, where 
minimal PCM has aided BB isolation allowing mass 
spectroscopy to identify more specific BB proteome 
candidates [34, 37]. This has been highly informa-
tive in identifying a “parts list” for basal body assembly. 
Whilst similar experiments have not been conducted in 
zebrafish, high conservation in centriole function and 
therefore protein content should permit vertebrate fol-
low-up experiments. In recent years, the multinational 
consortium known as SYSCILIA has compiled a “Gold 
standard” (SCGS) list of ciliary components found in the 
human genome [38]. For this article and to aid research-
ers wishing to study BB function in zebrafish, we have 
extracted BB- and centrosome-specific genes from the 
SCGS list and cross-referenced against genes with func-
tional data in zebrafish (Table  1). Out of the 60 BB-/
centrosome-specific proteins extracted from the SCGS 
list, 29 showed zebrafish functional follow-up studies, 
with the majority limited to knockdown as opposed to 
knockout approaches of gene silencing. It is clear from 
our table that BB researchers are just beginning to real-
ize the power of zebrafish to study vertebrate function 
of BB genes. With advanced genome editing techniques 
now accessible in zebrafish, we expect some insightful BB 
zebrafish papers to follow.

Notable basal body findings
Forward genetic mutagenic screens performed in the 
1990’s, spearheaded zebrafish to the forefront of ver-
tebrate functional genetic research. Teams from Bos-
ton (USA) and Tubingen (Germany), lead by Wolfgang 
Driever and Christiane Nusslein-Volhard, recovered hun-
dreds of N-ethyl-N-nitrosourea (ENU) directed muta-
tions that caused gross morphological abnormalities in 
zebrafish development [39, 40]. At the time of screening, 
the significance of cilia in human disease had not been 
determined. Mutants identified through screening pro-
cesses were grouped together based on common pheno-
typic features. One group of mutants showed phenotypic 
similarities to the ift88 mouse, a gene that had been 
shown in chlamydomonas to be required for ciliogenesis. 
Now considered the archetypal zebrafish ciliopathy phe-
notype, mutant lines display randomized heart looping 

and laterality defects, curved body axis, hydrocepha-
lus, pronephric and glomerular cysts, and defective eye 
development [41]. Several of these mutations have been 
mapped to key components in ciliary processes. Notably 
affecting components of the IFT system. For example, 
the zebrafish mutants oval (ift88), fleer (ift70), and elipsa 
(traf3ip1), display loss of ciliary assembly [42–45]. How-
ever, these mutants have intact BBs, suggesting that the 
BB alone is not sufficient for ciliogenesis.

Early zebrafish ENU screens appeared to recover 
mainly ciliary/axonemal gene mutations, rather than 
those specific to basal body construction or function, 
although a number of mutants still remain unmapped. 
More BB/centriolar relevant mutants have been dis-
covered through genetic screens for maternal-effect 
mutations [46, 47]. These experiments set out to under-
stand the maternal factors required for early embryonic 
development and in doing so, identify genes involved 
in the early cell cycle events that occur before zygotic 
genes switch on. As previously mentioned, cilia do not 
form in zebrafish until late gastrulation (approximately 
9-h post-fertilization (hpf)), suggesting that any cen-
triolar mutations will be more akin to the centrosome 
[26]. Interestingly, one of the mutants recovered, a mis-
sense mutant (Asn414Lys) known as cellular atoll (cea), 
encodes the centriolar component Sass6 [48]. Geno-
typically homozygote cea individuals develop to adults 
and look phenotypically identical to wildtype, however 
females produce clutches of eggs that due to defects in 
centrosomal duplication arrest during early cell division. 
Thus, Sass6 is a maternal effect gene required for pre-
gastrulation centrosomal duplication in zebrafish. How-
ever, the single amino acid change in cea appears not to 
affect BB function, homozygotes are viable and develop 
to adulthood. In other organisms, Sas-6 is localized to the 
centriolar cartwheel and has been speculated to form the 
cartwheel hub where loss leads to aberrant triplet micro-
tubule numbers [19, 20, 49]. Thus, Sas-6 localizes to the 
cartwheel hub and is essential for centriole symmetry. 
Indeed, x-ray crystallography of zebrafish Sas-6 N-termi-
nal has revealed that it assembles itself in vitro into con-
structs reminiscent of cartwheel hubs [21]. Further work 
on zebrafish, with the development of conditional muta-
tions, will be critical in understanding the role of verte-
brate Sas-6 in BB function.

Zebrafish forward genetic screens have been instru-
mental in understanding gene function, however muta-
tions for genes of interest are not always recovered. A 
popular choice, although recently called under scrutiny, 
is the use of antisense morpholino oligonucleotide tech-
nology (MO) to block gene-specific translation [50, 51]. 
MOs are cheap to synthesize, easy to administer and fast 
to generate preliminary data. Furthermore, since MOs 
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provide gene knockdown rather than knockout their use 
maybe more favorable for understanding gene function 
required for very early stages of development, such as cel-
lular division, when early lethality otherwise masks ENU 
mutation recovery. Several zebrafish studies have utilized 
MOs to study basal body protein function in vertebrates. 
A notable case is that of Poc1, a core centriolar WD40 
domain protein identified in both Chlamydomonas and 
Tetrahymena centriolar proteomic screens [34, 37, 52]. 
Interrogation of Poc1b function in Tetrahymena revealed 

a structural role in BB stability [53]. Knockdown of the 
zebrafish orthologue Poc1b using MOs results in phe-
notypic similarities to cilia deficient mutants, including 
visual impairment. Cilia motility and length is hindered 
in Poc1b morphant zebrafish embryos [53–55]. Recently, 
mutations in POC1B have been identified in patients dis-
playing ciliopathy features [54, 56, 57]. Together, these 
data show the power of multidisciplinary research that 
can ultimately lead to the identification of novel disease 
causing genes.

Table 1 Current zebrafish functional analysis, with zebrafish-specific references, of genes identified through the SCGS list 
to be BB/centrosome affiliated

Note the addition of post-SCGS genes, yap and gmnc

JSRD joubert syndrome and related disorders, BBS bardet biedl syndrome, T2D type 2 diabetes, ADPKD autosomal dominant polycystic kidney disease, NPHP 
nephronophthisis, AS alström syndrome, OFDS orofaciodigital syndrome type 1, MKS meckels syndrome, RP retinitis pigmentosa, LCA leber’s congenital amaurosis, MC 
microcephaly, USH2A usher syndrome 2A, COACH cerebellar vermis oligophrenia ataxia coloboma hepatic fibrosis, SCZD schizophrenia, SLS senior-loken syndrome, O 
osteopetrosis, CORD cone-rod dystrophy, RD retinal degeneration, ZFN zinc finger nuclease, ENU N-ethyl-N-nitrosourea, RVI retroviral insertion, Mt mutant. Phenotype 
abbreviations: CE convergent extension defects, V visual impairment, E ear and otolith defects, K kidney defects including pronephric tubule dilation, Ct abnormal 
cartilage development, Hc hydrocephaly, Mc microcephaly, LRP left–right patterning defects, BB+ BBs observed intact, C− cilia absent, CM defective cilia motility, CLO 
cilia length and organization affected, Hh hedgehog signaling abrogated, MD mitotic division disrupted

Gene RNA refseq/genbank Associated disease Genetic manipulation Phenotype Refs.

Ahi1 NM_001077561.1 JSRD MO CE, V, E, K, Ct, Hc, LRP, C− [68]

Cep131 XM_009306856.1 BBS, T2D MO CE, E, LRP, BB+ , CLO [15]

Bbs10 NM_001089463.1 BBS, T2D MO CE [69, 70]

Bbs12 XM_002667206.3 ADPKD, NPHP, AS, OFDS, MKS, JS MO CE, LRP [71]

Bbs5 NM_200299.1 BBS MO V, K, CLO [72]

C2orf71 BI878361.1 RP MO V [73]

Cep83 XM_009300427.1 Unknown MO E, CLO [74]

Cep164 EB913016.1 NPHP MO CE, Mc [75]

Cep290 NM_001168267.1 LCA, BBS, MKS, NPHP MO CE, V, K, Hc [76, 77]

Cep41 NM_001002194.1 JSRD MO V, E, Hc, LRP, CM [78]

Disc1 NM_001142263.1 SCZD MO V, Ct, Mc [79]

Kif7 NM_001014816.1 ACLS, JS, HYLS MO, ZFN Mt Hh [80, 81]

Mks1 NM_001077373.2 BBS, MKS MO CE [82]

Nek2 NM_201050.1 RP MO V [83]

Nin XM_009307506.1 SS MO V, E, Mc [84]

Ninl NM_001281798.1 USH2A MO V, K, BB+ [85]

Odf2a XM_001332528.6 MC MO V, Mc [86]

Poc1b NM_200118.1 CORD MO V, K, Ct, LRP, CLO [53]

Rab11a NM_001007359.1 Unknown MO LRP [87]

Rp2 NM_213446.1 RP MO V, Hc, Mc [88]

Rpgrip1 l NM_001246660.2 JS, MKS, COACH MO CE, V, Hc, LRP, BB+, CLO [89, 90]

Sass6 NM_213438.1 MC MO, ENU Mt MD [48, 91]

Sdccag8 XM_005156579.2 BBS, SLS MO CE, K, Hc [92]

Snx10a NM_001139462.1 O MO LRP, C− [93]

Stil NM_173244.2 MC MO, ENU Mt, RVI Mt. V, Mc [94, 95]

Toporsa NM_001305555.1 RD MO CE, V, Hc [96]

Ttk NM_175042.2 Unknown ENU Mt CE [97]

Yap1 NM_001139480.1 Unknown MO CE, V, K, Hc, BB+, C−, CLO [29]

Gmnc XM_009291838.1 Unknown MO, CRISPR Mt K, C−, CLO [32]
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Strengths and future of basal body research in zebrafish
The many advantages of using zebrafish as a model organ-
ism has firmly established this small tropical aquarium 
fish as a popular laboratory aid. Their rapid development, 
production of large numbers of eggs, optical transpar-
ency and excellent value for money are very appealing 
to vertebrate researchers. Additionally, BBs can be eas-
ily visualized alongside cilia in multiple zebrafish tissue 
by using primary antibodies for γ-Tubulin (BB—GTU88 
Sigma) and acetylated α-Tubulin (Cilia—T6793 Sigma) in 
conjunction with isotype-specific secondary antibodies 
(Fig. 1e–g) [58]. For many years, a major drawback when 
modeling gene function in zebrafish was the difficulty 
in performing targeted mutagenesis. As such, zebrafish 
researchers have relied on MOs to knockdown gene-
specific translation, a relatively quick and inexpensive 
technique [59]. However, problems associated with MO 
off-target defects have meant that an arduous list of con-
trols need implementing in order to validate MO induced 
phenotypic changes [60, 61]. In the last few years, tech-
niques to provide targeted mutagenesis in zebrafish have 
rapidly evolved thanks to the use of genome editing tools 
such as TALENS and CRISPR [62, 63]. Their develop-
ment has highlighted some of the inaccuracies in the 
literature that have spread through MO use, where as 
many as 80  % of MOs may actually fail to recapitulate 
bona fide mutations in genes of interest [50]. CRISPR 
and TALENS take advantage of the imperfect endog-
enous repair mechanism, non-homologous end join-
ing, which initiates after targeted double stranded DNA 
breaks are induced by certain endonucleases (reviewed 
in: [64, 65]). The development of tissue-specific promoter 
driven endonuclease expression has enabled researchers 
to create conditional mutants [66]. Minimal knowledge 
of molecular biology is required to generate the reagents 
required to direct the CRISPR Cas9 endonuclease to a 
favorable region of the genome, making this available to 
most laboratories and favorable over TALENS. In addi-
tion, there are comprehensive published protocols to per-
form, validate, and maintain CRISPR-induced mutagenic 
lines [66, 67]. Therefore, generating CRISPR directed 
mutant zebrafish lines is fast becoming an established 
method in zebrafish laboratories. Yet, there is little pub-
lished work on BB-specific mutant zebrafish lines. Both 
global and conditional CRISPR techniques will provide 
BB researchers with invaluable tools to study candidate 
gene function, especially when considering the ubiqui-
tous nature of BB gene expression. There is huge scope 
for utilizing zebrafish in BB research and it will be excit-
ing to see how the systematic mutagenesis of the BB pro-
teome will identify novel roles both at the structural and 
functional level.
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