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Amyloid-β interrupts canonical Sonic 
hedgehog signaling by distorting primary cilia 
structure
Anna G. Vorobyeva and Aleister J. Saunders* 

Abstract 

Background: Primary cilia are small non-motile microtubule and cell membrane protrusions expressed on most 
vertebrate cells, including cortical and hippocampal neurons. These small organelles serve as sensory structures sam-
pling the extracellular environment and reprogramming the transcriptional machinery in response to environmental 
change. Primary cilia are decorated with a variety of receptor proteins and are necessary for specific signaling cas-
cades such as the Sonic hedgehog (Shh) pathway. Disrupting cilia structure or function results in a spectrum of dis-
eases collectively referred to as ciliopathies. Common to human ciliopathies is cognitive impairment, a symptom also 
observed in Alzheimer’s disease (AD). One hallmark of AD is accumulation of senile plaques composed of neurotoxic 
Amyloid-β (Aβ) peptide. The Aβ peptide is generated by the proteolytic cleavage of the amyloid precursor protein 
(APP). We set out to determine if Aβ affects primary cilia structure and the Shh signaling cascade.

Methods: We utilized in vitro cell-based assays in combination with fluorescent confocal microscopy to address our 
study goals. Shh signaling and cilia structure was studied using two different cell lines, mouse NIH3T3 and human 
HeLa cells. To investigate how Aβ levels affect Shh signaling and cilia structure in these cells, we utilized naturally 
secreted Aβ as well as synthetic Aβ. Effects on Shh signaling were assessed by luciferase activity while cilia structure 
was analyzed by fluorescent microscopy.

Results: Here, we report that APP localizes to primary cilia and Aβ treatment results in distorted primary cilia struc-
ture. In addition, we demonstrate that Aβ treatment interrupts canonical Shh signal transduction.

Conclusions: Overall, our study illustrates that Aβ can alter primary cilia structure suggesting that elevated Aβ levels, 
like those observed in AD patients, could have similar effects on neuronal primary cilia in the brain. Additionally, our 
study suggests that Aβ impairs the Shh signaling pathway. Together our findings shed light on two novel targets for 
future AD therapeutics.
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Background
Elevated levels of Amyloid-β (Aβ) peptide initiates a cas-
cade of events that ultimately result in Alzheimer’s dis-
ease (AD) [1–4]. Aβ is a small (4 kDa) neurotoxic peptide 
that can oligomerize into higher order structures. In AD, 
these oligomers interrupt neuronal activity resulting in 
synaptic dysfunction and eventually lead to cognitive 

decline [5–10]. Aβ is produced by sequential β- and 
γ-secretase proteolytic cleavage of the amyloid precursor 
protein (APP) [11–17]. APP function is not well under-
stood, however, studies that shed light on the physiologi-
cal role of Aβ in non-diseased brains show that Aβ plays 
a role in synaptic transmission and is involved in learning 
and memory formation [18–22]. For this reason, it is crit-
ical to maintain adequate soluble Aβ levels that support 
synaptic plasticity while not exceeding the pro-amyloi-
dosis threshold. In our recent report, we discovered that 
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cyclopamine, a Sonic hedgehog (Shh) signaling inhibi-
tor, decreases Aβ generation by modulating γ-secretase-
mediated cleavage of APP [17].

The Sonic hedgehog (Shh) signaling pathway is best 
known for its pivotal role in development and neurogen-
esis [23–28]. More recent reports identified active Shh 
signaling in the adult brain [27–29]. Specifically, compo-
nents of the Shh signaling pathway are expressed in the 
adult hippocampal dentate gyrus, a brain region pro-
foundly affected by Alzheimer’s disease.

The canonical Shh signaling cascade relies on the pri-
mary cilium for signal transduction [25, 29–34]. Virtu-
ally all mammalian cells bear a primary cilium [35, 36]. 
This conservation across cell types suggests that cilia 
play critical role(s) in cellular function. In humans, when 
cilia structure is disrupted, significant cellular and organ 
dysfunction is observed. All ciliopathies share one phe-
notype, cognitive impairment [37–42]. These findings 
suggest that neuronal cilia may house signaling cascades 
critical for learning and memory [43, 44] and therefore, 
may be important in AD pathogenesis.

At the primary cilium, Shh signaling is initiated by 
binding of the secreted Shh peptide to the patched 1 
(Ptch1) receptor, resulting in disinhibition of smoothened 
(Smo), a G protein-coupled receptor (GPCR). Active Smo 
triggers a signaling cascade that ultimately results in 
Gli-mediated transcriptional regulation of downstream 
genes [45–49]. In mammals, this canonical Shh signaling 
pathway requires primary cilia [25, 29–34]. Impaired Shh 
signaling results in similar phenotypes as those observed 
in patients with disrupted cilia structure or function 
[37–42]. The aforementioned discoveries and our previ-
ous finding that the Shh signaling inhibitor, cyclopamine, 
alters APP metabolism and Aβ levels, prompted us to 
investigate a possible molecular cross-talk between Shh 
signaling, Aβ, and primary cilia.

In the current study, we evaluated whether increased 
Aβ levels disrupt primary cilia structure and the mam-
malian Sonic hedgehog signaling pathway. Using immu-
nofluorescence microscopy, we detected Aβ induced 
changes in cilia structure. Furthermore, we found that Aβ 
treatment inhibits Shh signaling in NIH3T3 cells. Finally, 
we detected that APP localizes to the primary cilium 
with the Hedgehog signaling component Smo. This sug-
gests that APP may have a functional role in the cilium 
and that distorted cilia structure and impaired canoni-
cal Shh signaling could be contributing factors to AD 
neuropathology.

Methods
Antibodies, plasmids and reagents
Antibodies were obtained from the following: rab-
bit APP C-terminus A8717, mouse anti-acetylated 

tubulin (Sigma: 1:1000). Fluorescent secondary anti-
bodies included the AlexaFluor 488, 594, 649 (Jackson 
Immunoresearch Laboratories: 1:250). Cyclopamine 
(5 μM) was purchased from LC Laboratories, L-685,458 
(2 μM) and DMSO from Sigma, SAG (100 nM) from Cal-
biochem, and human Aβ42 peptide (0.1–5  μM) [50, 51] 
from Tocris R&D Systems. pcDNA3.1-EGFP-Smo and 
pcDNA3.1-Cherry-APP695 were used for overexpression 
studies.

Cell culture
HeLa and NIH3T3 cells were maintained at 37  °C, 5% 
 CO2 in complete DMEM (Corning) supplemented with 
10% FBS (Atlanta Biologicals), 100 units/ml penicillin 
and 100  μg/ml streptomycin (Corning), 2  mM l-glu-
tamine (Corning). Cells were grown to 80% conflu-
ence and serum starved (0.5% FBS DMEM) for 24  h to 
induce ciliogenesis and subsequently pharmacologically 
treated or genetically manipulated. For pharmacological 
treatment, drugs were diluted in 0.5% FBS DMEM. For 
genetic overexpression experiments, cells were trans-
fected using TurboFect Transfection Reagent (Thermo 
Scientific) according to the manufacturer’s protocol. For 
Aβ containing conditioned media, stable HEK293 APP-
695
swd or naïve HEK293 cells were grown in 150 mm dish to 
100% confluence and culture media was replaced with 
15  ml 0.5% FBS DMEM to cover the cells. Cells were 
cultured with or without supplemental L-685,458 for an 
additional 48 h then the media was collected and cleared 
by a brief 1000×g centrifugation. For NIH3T3 treatment 
with biological Aβ, conditioned media was diluted 1:2 
in fresh 0.5% FBS DMEM prior to addition to confluent 
NIH3T3s. Stable HEK293 APP695

swd cells were generated by 
overexpressing the Cherry-APP695

swd mammalian expres-
sion construct in HEK293 cells and selecting single cell 
colonies by supplementing the growth media with G418 
(Geneticin; 400 μg/ml) for 14 days.

LDH cytotoxicity assay
Levels of LDH were measured according to manufac-
turer’s protocol (Roche). Briefly, conditioned media 
were collected from treated cells, 1:1 ratio of this media 
to LDH master mix was incubated at ambient tem-
perature for 30  min. Samples were analyzed using 
spectrophotometer.

Luciferase assay
Stable NIH3T3 Shh-Light2 (kind gift from N. Dahmane 
University of Pennsylvania, PA, USA) cells were grown to 
90% confluence in 96-well plate, then serum starved for 
24 h and exposed to indicate pharmacological agents for 
an additional 24 h.
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Lysates were collected using 1XGLB Lysis Buffer (Pro-
mega) and subject to Bright-Glo Luciferase assay (Pro-
mega) according to manufacturer’s protocol and samples 
were analyzed using Promega Luminescent plate reader. 
Firefly Luciferase luminescence values were normalized 
to cell number determined by SYBR (molecular probes) 
green assay.

Immunofluorescence
Cells were fixed using 4% PFA, 0.1% Triton-X-100, 
blocked in 2% BSA for 30  min and incubated with pri-
mary antibodies over night at 4  °C. Cells were rinsed 
with PBS and stained with secondary antibodies at room 
temperature for 1  h, washed with PBS and mounted 
(Vectashield with DAPI, VectorLabs). Sequential Z-stack 
images were taken (63 × oil objective, 2–5 × zoom, 30–50 
slices were imaged at 0.25 μm step size, 1024 × 1024 pix-
els) using Olympus Fluoview FV1000 inverted confo-
cal microscope (Drexel University Cell Imaging Center). 
Quantification of 3D confocal image stacks was accom-
plished using Volocity Image analysis software (Perki-
nElmer). The following Volocity settings were most 
reliable and reproducible. Randomly selected fields (> 10 
fields/cover slip) were used for quantification: an object 
protocol in Volocity was created to identify ROIs (cilia) 
in max projection stacked images by gating size (> 1 μm3 
min, < 7 μm3 max), ≥ 0.2 μm diameter, and fluorescence 
intensity thresholds (500 min–4095 max) [52].

Statistical analysis
All graphs and diagrams represent mean values ± stand-
ard error of all triplicates from at least three independ-
ent experiments. ANOVA and two-tailed Student’s t tests 
were used when appropriate to compare three or two 

treatment groups, respectively, and calculate significance 
from at least three independent experiments (*p < 0.05, 
**p < 0.01, ***p < 0.005).

Results
Aβ decreases primary cilia length and frequency in NIH3T3 
cells
To determine whether elevated Aβ levels affect primary 
cilia structure, we exposed cells to increasing concen-
trations of extracellular Aβ and examined cilia structure 
by immunofluorescence microscopy using an anti-acet-
ylated tubulin antibody, an established primary cilia 
marker. Mouse NIH3T3 fibroblasts were serum-starved 
for 24  h, to induce cilium formation, then exposed to 
various Aβ concentrations [50, 52]. Exposure of these 
cells to 0.5  μM synthetic human Aβ42 resulted in sig-
nificant reduction in primary cilia length (43%) (Fig. 1a, 
b). As validation, 3D voxel analysis (using Volocity; see 
“Methods”) also provided data indicating significant 
reduction in cilia volume and surface area which were 
consistent with reduced cilia length in cells treated with 
Aβ (data not shown). To ensure that the effects were not 
limited to synthetic Aβ, we exposed cells to conditioned 
media containing cellularly secreted Aβ. To generate 
this biologically synthesized Aβ, we cultured HEK293 
cells that stably overexpress APP695

swd and collected the 
conditioned culture media (Fig.  2a). APP695

swd cells har-
bor the APP Swedish mutation (K670N/M671L), which 
increases β-secretase cleavage, resulting in elevated lev-
els of Aβ secretion [53]. We used conditioned media 
from naïve HEK cells as a negative control. Compared to 
cells that were exposed to conditioned media from naïve 
cells, cells treated with conditioned media from APP695

swd 
cells, showed a significant decrease in cilia length (47%) 
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Fig. 1 Synthetic Amyloid-β decreases cilia length. a Confocal immunofluorescence analysis of naïve NIH3T3 cells treated with synthetic Aβ42 
peptide for 24 h. Cells were stained with acetylated tubulin and > 50 cilia per condition analyzed. Scale bar represents 20 μm. b Quantification 
of naïve NIH3T3 cells exposed to synthetic human Aβ42 for 24 h. Cilia length was analyzed using an anti-acetylated tubulin antibody and 
immunofluorescence, 30–50 cells were analyzed using Volocity 3D analysis software. Values denote mean ± standard errors of the means. Student’s 
t test was used for statistical analysis: ***p < 0.005, **p < 0.01, *p < 0.05 
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(Fig.  2b, c). Additionally, the percentage of ciliated cells 
decreased by 47.5% (p = 4.095 × 10−6) upon treatment 
with Aβ-conditioned media (Fig.  2d). Our results indi-
cate that extracellular Aβ decreases the number of cilia 
per cell and alters cilia structure. These degenerative-like 

effects were rescued when cells were exposed to condi-
tioned media collected from APP695

swd HEKs grown in 
the presence of 2  μM L-685,458 (Fig.  2a–d). L-685,458 
is a commonly used γ-secretase transition-state inhibi-
tor which inhibits Aβ generation. Taken together, these 
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Fig. 2 Secreted Amyloid-β treatment decreases cilia length. a Representation of experimental approach to generate secreted neurotoxic Aβ. 
Naïve and stable HEK293APP

swd cells were cultured and conditioned media collected for NIH3T3 treatment. Conditioned media (CM) collected from 
stable HEK293APP

swd treated with vehicle control (DMSO) is designated as “Aβ CM” while stable cells treated with 2 μM L-685,458 is designated as 
“Aβ CM + L685,458”. Conditioned media was diluted 1:1 with fresh DMEM immediately prior to NIH3T3 treatment. b Confocal 3D analysis of 
naïve NIH3T3 cells treated with vehicle control CM, Aβ CM, or Aβ CM_L685,458 for 24 h. Cells were stained with acetylated tubulin and > 50 
cilia per condition analyzed. Scale bar represents 20 μm. c, d Bar graph representing quantification of cilia length and frequency. Values denote 
mean ± standard errors of the means. Student’s t test was used for statistical analysis: ***p < 0.005, **p < 0.01, *p < 0.05 
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results indicate that extracellular Aβ has adverse effects 
on the maintenance and structure of primary cilia.

Aβ disrupts canonical Sonic hedgehog signaling
Vertebrate canonical Shh signaling requires proper pri-
mary cilia structure. Since we observed that Aβ disrupts 
cilia structure, we tested whether Aβ would also alter 
canonical Shh signaling. We utilized NIH3T3 Shh-Light2 
cells, a commonly used Shh reporter system. NIH3T3 
Shh-Light2 cells stably express the Gli-responsive lucif-
erase construct [54]. Upon Shh activation with the ago-
nist SAG, endogenous Gli transcription factors enhance 
luciferase expression while the Shh antagonist cyclo-
pamine, decreases Gli-mediated luciferase expression 
(Fig. 3a).

We observed that exposing these reporter cells to Aβ 
decreased the Gli-mediated luciferase activity regardless 
of whether Shh signaling was simulated by SAG or not. 
In the absence of SAG, we exposed Shh reporter cells to 
varying levels of synthetic Aβ42 and detected a robust 
decrease in basal Gli-mediated luciferase activity. Spe-
cifically, Gli-mediated luciferase activity decreased by 

42% and 30% in cells treated with 1 μM and 2 μM Aβ42, 
respectively (Fig. 3b). One possibility is that the observed 
decrease in canonical Shh signaling could be due to 
Aβ-mediated cell death. To address this, we utilized the 
lactate dehydrogenase (LDH) cytotoxicity assay, which 
measures cellular cytotoxicity and cytolysis. Since we did 
not detect changes in LDH levels across all treatments, 
our results indicate that the observed Aβ-mediated 
effects on Gli-mediated luciferase activity are not due to 
cytotoxicity (Fig. 3c).

We observed a more substantial decrease in Gli-medi-
ated luciferase activity when cells were simultaneously 
treated with Aβ and SAG. We observed a 56% decrease in 
cells treated with 2 μM Aβ42 and an 11% decrease in cells 
treated with as little as 100 nM synthetic Aβ42 (Fig. 3d). 
Consistent with canonical Shh signaling, luciferase 
expression decreased significantly in cells co-treated with 
SAG and cyclopamine as well as the combination of SAG 
and synthetic Aβ42. These results show that elevated Aβ 
interrupts steady-state and agonist-induced canonical 
Shh signaling. These results correlate with defective cilia 
structure and maintenance, which was previously shown 
to alter Shh signaling [26, 29, 34].
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Fig. 3 Neurotoxic Amyloid-β disrupts canonical Sonic hedgehog signal transduction. a Gli-mediated luciferase activity of NIH3T3 Shh-Light2 cells 
treated with 100 nM SAG or in combination with 5 μM cyclopamine for 24 h. Quantification represents Gli-mediated luciferase activity normalized 
to vehicle control treated cells. b Gli-mediated luciferase activity of NIH3T3 Shh-Light2 cells treated with indicated concentrations of synthetic 
human Aβ42 peptide for 24 h. c LDH cytotoxicity analysis of NIH3T3 Shh-Light2 cells treated with Aβ42 peptide for 24 h. d Gli-mediated luciferase 
activity of NIH3T3 Shh-Light2 cells treated with SAG and increasing concentrations of Aβ42 peptide for 24 h. Values denote mean ± standard errors 
of the means. Student’s t test was used for statistical analysis: ***p < 0.005, **p < 0.01, *p < 0.05 
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APP localizes to primary cilia
Since canonical Shh signaling requires primary cilia, 
we used immunofluorescence to investigate if the amy-
loid precursor protein (APP) localizes to the primary 
cilium. We utilized two established markers of pri-
mary cilia, acetylated tubulin and Smo, to identify cilia 
[55–57]. A commercially available antibody is available 
for acetylated tubulin, however, a reliable Smo antibody 
is currently unavailable, and thus it is difficult to ana-
lyze endogenous Smo. To overcome this shortcoming, 
researchers routinely transiently overexpress human 
GFP-Smo to identify cilia [55–57]. Here, we transiently 
co-overexpressed human Cherry-APP and GFP-Smo in 
NIH3T3 cells. These cells were also stained with an anti-
body to acetylated tubulin. These experiments revealed 
that APP localizes to the primary cilium with acetylated 
tubulin (Fig. 4a–d) and GFP-Smo (Fig. 4c, d). To further 
validate this finding and rule out possible artifacts due 
to APP overexpression, we investigated whether endog-
enous APP localized to primary cilia in HeLa cells. Using 
the A8717 APP-specific antibody we again identified 
endogenous APP-positive primary cilia (Pearson’s cor-
relation coefficient r = 0.91) (Fig. 4e, f, Additional file 1). 
Interestingly, Additional file 1 reveals APP accumulation 
at the ciliary basal compartment and a less intense APP 
signal at ciliary distal tip was detected. The latter is con-
sistent with one proposed localization mechanism for 
proteins destined to primary cilia. Briefly, golgi-derived 
cilia-bound vesicles are trafficked to cilia basal body com-
plex. One function of the cilia basal body complex is to 
sort and facilitate cilia-specific transmembrane cargo 
for further cilia intraflagellar transport (IFT) (reviewed 
in [58, 59]). Therefore, one could speculate that a por-
tion of APP packaged at the Golgi arrives at ciliary basal 
body complex to gain access to primary cilia membrane 
for further sensory functions. A recent report by Kohli 
and colleagues used a combination of biotinylation and 
mass spec to characterize proteins localized to the pri-
mary mouse IMCD3 cell cilia [60]. The authors list APP 
in their full report but do not validate APP with second-
ary methods. Therefore, to our knowledge, we are first to 
validate that APP protein localizes to primary cilia and 
can be observed within this organelle together with the 
Hedgehog signaling component Smo. Since APP function 
is largely elusive, the aforementioned results could sug-
gest that APP may have a functional role in the primary 
cilium.

Discussion
Sonic hedgehog (Shh) signaling requires an intact cilia 
structure, since Shh signaling fails in cells with disrupted 
cilia structure [30–34]. We provide two lines of evidence 
suggesting Shh signaling and cilia are novel targets for 

Alzheimer’s disease (AD). First, we previously demon-
strated an intriguing yet indirect connection between 
Shh signaling and APP metabolism. Specifically, the Shh 
antagonist, cyclopamine, reduced γ-secretase mediated 
APP cleavage and resulted in decreased Aβ levels [17]. 
We did not illustrate the direct mechanism by which 
Sonic hedgehog inhibition could alter APP metabolism, 
we are still investigating this question. Hedgehog signal-
ing is complex, with canonical and non-canonical signal-
ing mechanisms described [61, 62]. Knowing the critical 
role that primary cilia play in Hedgehog signaling, we 
wanted to investigate a possible link between Aβ and 
Hedgehog signaling at the level of the primary cilium.

Our second line of evidence is our current results dem-
onstrating that increased Aβ levels disrupt cilia structure 
and inhibit canonical Shh signaling. The Shh signaling 
pathway is known for its role in development, neurogen-
esis and cell survival [26, 63, 64]. With our findings, one 
could postulate that increased Aβ levels observed in AD 
leads to cilia degeneration, which ultimately impairs Shh 
signaling and precludes Shh-mediated neuronal survival. 
Consistent with this possibility is the observation that 
impaired ciliogenesis leads to decreased synaptogenesis 
and neuronal maturation [65, 66].

Diseases associated with abnormal cilia structure 
are collectively referred to as ciliopathies and affect a 
wide range of organ systems resulting in a spectrum of 
phenotypes and symptoms [35–42, 67]. Interestingly, 
cognitive impairment is a common symptom among cili-
opathies [67, 68]. Human neuronal tissue and cultured 
cells express primary cilia [69–76]. Recent studies utiliz-
ing genetically modified mouse models where primary 
cilia are conditionally disrupted have demonstrated that 
neuronal primary cilia are critical for neurodevelopment 
and maintenance of neurogenesis in the adult hippocam-
pal and cortical structures [26, 34, 65, 77]. These find-
ings illustrate that disrupting cilia structure subsequently 
leads to alteration of important signaling pathways that 
are required for mechanisms such as neurogenesis and 
overall cellular homeostasis. Our results indicate that (i) 
exposure to elevated Aβ levels distorts cilia structure, (ii) 
Aβ can disrupt Shh signaling, and (iii) that APP local-
izes to primary cilia. This last finding begs the question 
of what functional role could APP have at the primary 
cilium. Interestingly, Fogel and colleagues demonstrated 
it is possible that APP could dimerize at the plasma 
membrane and bind Aβ peptide [78]. This study suggests 
APP may function as a receptor for its own peptide, Aβ. 
Therefore, we tested the hypothesis that overexpressing 
wild-type APP, which unlike the Swedish mutated APP 
results in normal Aβ levels, would enhance the cells’ sen-
sitivity to additional Aβ treatment. Consistent with our 
hypothesis, we observed that APP overexpressing cells 
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began to appear damaged and unhealthy within 1–3  h 
post treatment with various Aβ concentrations. This 
degenerative-like cellular phenotype was not observed in 

cells overexpressing empty-vector control (unpublished 
results) and only detected 24  h post treatment suggest-
ing this sensitivity is specific to APP overexpression. 

Fig. 4 Amyloid precursor protein localizes to primary cilia of NIH3T3 and HeLa cells. a Confocal analysis of overexpressed Cherry-APP localization 
in NIH3T3 cells stained using anti-acetylated tubulin antibody. Scale bar, 25 μm. b Compartmentalization analysis of acetylated tubulin (blue), 
Cherry-APP (red) using Volocity 3D imaging analysis software of the previous image in a. c, d Localization analysis of fluorescence intensity of 
NIH3T3 cells overexpressing Cherry-APP and GFP-Smo constructs. d Fluorescence intensities of acetylated tubulin (blue), GFP-Smo (green), and 
Cherry-APP (red) though the 5.47 μm cross section depicted in right-most panel of c. e Confocal immunofluorescence analysis of naïve HeLa cells 
co-stained with anti-acetylated tubulin and C-terminal APP antibody. Scale bar, 7 μm. (f) Fluorescence intensities of nuclei (blue), acetylated tubulin 
(green), and endogenous APP (red) though the 2.73 μm cross section depicted in right-most panel of e 
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Since cilia are sensory organelles decorated with an 
assortment of receptor proteins such as G protein-cou-
pled and growth factor receptors, one can speculate that 
APP could also function as a receptor sensing extracel-
lular Aβ levels at the primary cilium. This could lead to 
downstream signaling via the APP intracellular domain 
(AICD) (Fig.  5). Previous reports suggest AICD modu-
lates Shh signaling by regulating transcriptional activa-
tion of PTCH1, a negative regulator of Shh signaling, 
further indicating a relationship between Shh signaling 
and APP [79, 80]. Our observation that Aβ affects cilia 
structure and cilia-dependent Shh signaling further sup-
ports the notion that APP localizes to cilia for a specific 
function which could be to act as an Aβ-sensing receptor 
to mediate downstream cell survival signals.

Recent reports suggest cilia and type 3 adenylyl cyclase 
are also involved in cognitive functions such as learning 
and memory [43, 44]. Progressive decline in memory is 
observed in Alzheimer’s disease which led us to hypoth-
esize that cilia may be affected in AD brains. In support 
of our hypothesis, Chakravarthy and colleagues recently 
reported diminished cilia length of hippocampal dentate 

granule cells in an AD mouse model [81]. Consistent with 
the latter, our results suggest that increased Aβ levels 
could also be disruptive to neuronal cilia and potentially 
a mechanism underlying neuronal loss and cognitive 
decline observed in AD. It will be interesting to examine 
histological cilia structure in AD and non-AD human 
postmortem brain tissue at various stages of the disease. 
Interestingly, He et al. provided insight into the canoni-
cal Shh signaling pathway using APP23 transgenic mouse 
model and compared the results to biochemical analysis 
of healthy controls and Alzheimer’s patient human brain 
tissue results [82]. The authors consistently observed ele-
vated Shh peptide protein levels and Smo levels in APP23 
mice of a variety of ages. Levels of other canonical Shh 
signaling cascade components, such as Ptch1, Ptch2, 
and the Gli proteins varied significantly with mouse age. 
Smo, however, was consistently elevated in all ages of 
APP23 mice. In addition, consistent with our cell culture 
data, the authors observed decreased Ptch–Gli1 medi-
ated signaling in cultured mouse glial precursor cells and 
decreased neurogenesis in aged APP23 mice.

Aβ

Neuronal Primary Cilia 

Survival Factors

Shh
Ptch
Smo

Aβ

APP
AICD

Survival Factors

Fig. 5 Cartoon illustration of a possible mechanism for APP sensing Aβ at the primary cilium. On the right, disrupted primary cilium structure 
due to increased Aβ levels leads to interrupted Sonic hedgehog signaling, abolished secretion of survival factors, and increased AICD-mediated 
transcriptional activation pro-amyloidogenic genes and the Shh negative regulator PTCH1 
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Conclusions
In this study, we discovered that Amyloid-β, which plays 
a central role in Alzheimer’s disease pathogenesis, (i) dis-
torts primary cilia structure, (ii) disrupts canonical Sonic 
hedgehog (Shh) signaling and (iii) that its precursor, APP, 
localizes to the primary cilium along with smoothened 
(Smo) a known cilia resident Shh signaling component. 
We also rescued the cilia degenerative-like morphologi-
cal changes by pharmacologically suppressing Amyloid-β 
production. The latter result confirmed that the degener-
ative-like effects on cilia structure and Shh signaling are 
specifically due to elevated Amyloid-β levels. Moreover, 
to our knowledge, this is the first report to validate that 
APP protein localizes to the primary cilium by immuno-
fluorescence microscopy. Together, our findings suggest 
new AD risk factors and therapeutic targets, as well as a 
novel putative function for APP and its role in ciliopathy-
associated cognitive impairment.

Additional file

Additional file 1. 3D rendering of naive HeLa cells fixed and costained 
for endogenous APP (red) using the APP C-terminal A8717 antibody and 
acetylated tubulin (green) antibody to detect cilia. DAPI (blue) was used 
to detect cell nuclei. Video rendering was made using Volocity imaging 
analysis software.
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