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What are those cilia doing in the neural tube?
Sarah N Bay1,2 and Tamara Caspary1*
Abstract

Primary cilia are present on almost all vertebrate cells, and they have diverse functions in distinct tissues. Cilia are
important for sensation in multiple capacities in contexts as different as the retina, kidney, and inner ear. In addition
to these roles, cilia play a critical part in various developmental processes. Of particular importance is the
development of the neural tube, where cilia are essential for the transduction of the Sonic Hedgehog (Shh)
signaling pathway that specifies neuronal cell fates. This relationship is well established and is the most
recognizable function for cilia in the neural tube, but it may be part of a larger picture. Here, we discuss the links
between cilia and Shh signaling, as well as suggesting additional roles for cilia, and mechanisms for their
placement, in the neural tube.
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Review
Since being functionally linked to the Sonic Hedgehog
(Shh) signaling pathway, primary cilia have sparked
enormous interest. The initial connection came from an
unbiased forward genetic mouse screen in which a num-
ber of the mutations disrupted genes important for cilia;
the resulting mutant embryos showed abnormal pattern-
ing of the neural tube [1,2]. Shh signaling controls
neural tube patterning [3,4], and double mutant analysis
showed cilia are critical for Shh signal transduction [1,2].
Previously, the focus of most research was on the func-
tion of motile cilia, which have a 9 + 2 microtubule
structure, but the past decade has witnessed an explo-
sion of interest in primary cilia, which lack the inner
doublet and instead have a 9 + 0 axonemal arrangement.
These cilia have now been implicated in many biological
processes, from obesity to cancer to learning and mem-
ory [5-8]. Indeed, the widespread role of cilia in various
systems is made clear by the range of phenotypes
present in the ciliopathies, which are human diseases
that arise from mutations in cilia genes [9-13]. In this re-
view, we return to the beginning and the source of all
the excitement - the embryonic neural tube.
Core progress has been made towards understanding

the mechanistic details behind the abnormal neural
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patterning of mouse mutants with disrupted cilia
[1,2,14,15], but other roles for cilia in the neural tube
have yet to be explored. Proper positioning of cilia in
several developmental contexts is linked to the planar
cell polarity (PCP) pathway, raising the possibility that
the placement of cilia in the neural tube may be critical
[16-21]. Additionally, specialized ependymal cilia control
circulation and mechanosensation of cerebral spinal
fluid (CSF) in the ventricles of the brain [22-25], which
is derived from the anterior neural tube. Taken together,
these data give us a glimpse of what the cilia in the
neural tube are really doing there.
Formation of the neural tube
Following the specification of the germ layers, the neural
tube starts to form [26,27]. The process proceeds in
three dimensions, most critically along the dorsal-ventral
(D-V) and anterior-posterior (A-P) body axes. Within
the D-V axis, the dorsal ectoderm thickens into the
neural plate (or neuroepithelium) whose borders then
elevate into neural folds and subsequently extend to roll
into a tube. The tops of the neural folds fuse along the
midline to close the neural tube, and the structure then
separates from the overlying surface ectoderm. The floor
plate at the ventral midline is induced by Shh from the
underlying notochord, and neural patterning proceeds as
cell fates are specified along the D-V axis. At the same
time, along the A-P axis, the tube narrows and elongates
in a process termed convergent extension (CE); errors in
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this step lead to neural tube defects (NTDs), such as cra-
niorachischisis, anencephaly, and spina bifida [28].

Cilia are required for Sonic Hedgehog signaling and
neural tube patterning
Patterning of the neural tube and correct cell fate speci-
fication are integral parts of proper development, and
tight control of the Shh signaling pathway is required for
appropriate ventral patterning and specification of motor
neurons and interneurons [29,30]. The dorsal cell fates
are specified by the BMP and Wnt signaling pathways.
As the links between cilia and Wnt signaling are contro-
versial, they are well reviewed elsewhere [20,31-36].
Clearly, however, cilia are known to be required for Shh
signaling in mammals, with many members of the path-
way localizing to cilia [37-39].
In the ventral neural tube, a combination of the

amount and duration of Shh signaling specifies six
neural progenitor cell fates [29,30,40]. Due to their prox-
imity to the underlying notochord (the initial source of
secreted Shh), the most ventral cells at the midline are
exposed to the highest concentrations of Shh and are
specified as the floor plate and the p3 domain, which
will give rise to V3 interneurons [29,35,41,42]. Inter-
mediate levels of Shh induce the formation of the pMN,
p2, p1, and p0 domains, precursors to motor neurons
and V2, V1, and V0 interneurons, respectively [29,35].
The presence of Shh also inhibits dorsal cell type specifi-
cation [40]. One of the key features of the Shh gradient
that directs patterning is the balance between activator
and repressor transcriptional activities. As cells are
exposed to varying levels of Shh, a signaling cascade is
responsible for the regulation of the Gli family of tran-
scription factors (Gli1 to Gli3), which act as effectors
that can activate (GliA) or repress (GliR) transcription of
target genes. Gli1 acts solely as an activator, and, though
Gli2 and Gli3 both contain repressor domains, Gli2 acts
as the primary activator while Gli3 is the major repres-
sor in the neural tube [43-46]. It is ultimately the bal-
ance of these two opposing signals that is critical for
patterning, and cilia are crucial for maintaining this
balance.
The transduction of the signal from Shh ligand to the

Gli transcription factors is an intricate cascade involving
many elements, including Patched (Ptch1), a transmem-
brane receptor, Smoothened (Smo), a membrane protein,
Suppressor of Fused (SuFu), and Kif7, a possible motor
protein. In the absence of Shh, Ptch1 inhibits Smo and
causes repression of the pathway [39]. This results in the
proteolytic cleavage of Gli3, the major repressor, and the
subsequent repression of target genes [46]. When Shh
ligand is present, it binds to Ptch1, which removes the
repression of Smo [39]. Gli3 is no longer cleaved into
the repressor form, Gli2 is stabilized and activated, and
the transcription of target genes, among them Ptch1 and
Gli1, is promoted.
In vertebrate systems, this signaling cascade happens

in the context of the cilium, and the dynamic transport
of pathway members is key for proper transduction.
When the pathway is off, Ptch1 is localized to the cilium
whereas Smo is not; upon stimulation by Shh ligand,
Ptch1 leaves the cilium while Smo becomes enriched
there [39]. The Gli proteins, Kif7, and SuFu all localize
to the tips of cilia [47-50]. Gli proteins are bound and
stabilized by SuFu and bidirectionally trafficked along
the axoneme; without pathway activation, they are
cleaved to produce GliR [2,49,50]. SuFu also acts to in-
hibit the activation of Gli [49,50]. Kif7, the mouse homo-
log of Drosophila Costal-2, functions between Smo and
the Gli proteins to both negatively and positively regu-
late the pathway [47]. Though they are not the only reg-
ulators, core cilia proteins function prominently in
pathway control.

Intraflagellar transport mutants connect cilia transport
and Sonic Hedgehog signaling
Cilia and Shh were initially linked through forward gen-
etics in the mouse, since mutants defective in intraflagel-
lar transport (IFT) proteins showed improper neural
tube patterning, and IFT is necessary for ciliogenesis
and cilia maintenance [1,2]. The IFT particles are com-
posed of two biochemically distinct complexes: IFTA
and IFTB [51]. IFTB proteins, along with the molecular
motor kinesin-II, are necessary for transport from the
base of the cilium to the tip (anterograde transport), and
it was mutations in members of this complex that gave
the first indication that cilia and Shh signaling were con-
nected. Mutations in IFTB genes, such as Ift88 and
Ift172, lead to either absent or severely shortened cilia;
this results in no Shh signaling and a lack of both GliA
and GliR. Thus, in Ift88pol and Ift172wim mutants, the
lack of activation combined with derepression causes
neural tube mispatterning [1,2].
Together, IFTA proteins and the cytoplasmic motor

dynein power retrograde transport, which traffics pro-
teins from the tip of the cilium back toward the cell
[51]. Unlike anterograde transport mutants, which lack
cilia, retrograde transport mutants have abnormal cilia
morphology due to protein accumulation at the tip of
the cilium [48]. This can result in complete blockage of
signal transduction (as in Dync2h1, discussed below) or
in ectopic pathway activation, as seen in the Ift122 null
allele sister of open brain (sob) [48,52]. These retrograde
defects highlight the fact that the movement of Gli pro-
teins into the cilium is not sufficient to support their
proper activity. IFT proteins are not only crucial to build
and maintain the cilium, but also to regulate Gli activa-
tor and repressor function [48,52].
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Though originally a topic of intense debate, the claim
that transduction of the Shh pathway is intricately tied
to proper cilia structure and transport has been sup-
ported by the identification of diverse mutants that all
disrupt cilia structure or impair cilia protein transport.
The simple ability to move pathway components into
and out of the cilium is not enough for proper signal
transduction; instead, the relative rates of anterograde
and retrograde transport are critical. This is demon-
strated most strikingly by the genetic interactions of an-
terograde and retrograde trafficking mutants. Dync2h1
is the heavy chain of dynein, the cytoplasmic motor re-
sponsible for retrograde transport, and when it is dis-
rupted (as in its mutant ling-ling), Ptch1, Smo, and Gli2
are all trafficked into the cilium, but no Shh transduc-
tion occurs, causing a dorsalized neural tube [52,53].
Interestingly, a single copy of a hypomorphic allele of
the anterograde IFTB component, Ift172 (Ift172avc1/+),
rescues the patterning phenotype caused by the absence
of retrograde transport [52]. Even more intriguing is the
demonstration that reduction of IFT122, an IFTA pro-
tein, via Ift122sopb/+ is also able to suppress the
Dync2h1lln/lln phenotype [52]. Though both Dync2h1
and Ift122 are assumed to be part of the retrograde
transport complex, the fact that Ift122sopb/+ rescues the
Dync2h1lln/lln phenotype suggests that Ift122 may also
act outside retrograde transport, emphasizing the nuan-
ces of transport necessary for proper signaling. This is
further highlighted by recent analysis of an allelic series
of IFTA mutants, which demonstrated that proper Shh
signaling relies on correct cilia architecture and protein
trafficking [54].
In addition to the conserved cilia proteins critical in

building and maintaining cilia through multiple phyla,
other genes that are important for cilia also regulate Shh
signaling. For example, Arl13b and Rab23 are small
GTPases, and mutations in either lead to unique defects
in neural tube patterning. Strikingly, this is due to loss
of Arl13b preventing full activation of GliA but leaving
normal GliR function intact [55]. In genetic analysis,
Arl13b functions downstream of Smo, but cell biological
analysis shows that it also controls entry of Smo into the
cilium, arguing that it may possess an additional up-
stream function [55,56]. Similarly, Rab23 may function
to affect cilia trafficking at multiple points. Rab23
mutants display ventralized neural tube patterning, and
genetic analysis has placed it downstream of Smo, sug-
gesting that it functions primarily through inhibiting the
activation of Gli2 [57-59]. More recently, quantitative
analysis of protein trafficking in the cilium has described
a role for Rab23 in overseeing the recycling rate of Smo
[60]. Furthermore, loss of another Shh inhibitor, TULP3,
leads to ventralization of the neural tube [61,62].
TULP3, a tubby-like protein, acts to repress Shh in the
absence of ligand in a Gli2-dependent but Smo-
independent manner and is vital to balancing progenitor
proliferation with neuron differentiation [61,62]. Path-
way regulators such as these, which act at multiple steps
of the cascade, suggest that the cilium as an organelle
may function for efficiency; this is to say, its small and
controlled environment appears to have evolved to use
some proteins in many different capacities as a way to
maximize the effectiveness of the system.

Right place . . . right time
Although the intricate connections between cilia and
Shh signal transduction are the best understood at
present, the cilia within the neural tube may have add-
itional functions. Cilia on cells that line the ventricular
zone of the neural tube are aligned and extend into the
lumen. This organization is most obvious at the most
ventral levels of the ventricular zone near the floor plate.
It seems unlikely that this specific orientation is an
artifact but rather suggests that the placement of these
cilia may be important to their function, to their ability
to respond to signal, or to the morphology of the neural
tube. For example, it is not yet known whether cilia in
the neural tube function solely to transduce the Shh or
if they actually sense the Shh ligand. Perhaps this
organization of cilia in the ventral neural tube is most
obvious as their length there is proportional to their
ability to detect Shh ligand. On the other hand, the pos-
ition of the cilium directly relates to the plane of cell
division. As the cells lining the lumen are highly prolif-
erative progenitor cells, a subset of which remain pro-
genitors, the positioning of the cilium could be critical
for cellular asymmetry. Shh has a well established role as
a mitogen in other tissues [63,64], and the cells in the
ventricular zone are highly proliferating progenitors; the
cilia could be present for morphogenesis in addition to
patterning. Cilia position is critical to proper function in
other developmental contexts. For example, PCP, or
non-canonical Wnt signaling, controls cilia localization
in the embryonic node [19]. Should cilia position in the
neural tube be shown to be deliberate, PCP signaling is
an excellent candidate for overseeing this process. Add-
itionally, cilia are known for their sensory function in
other contexts. In ependymal cells, which line the ventri-
cles of the brain and are responsible for CSF production
and circulation, cilia are known to have mechano- and
chemosensory roles [23,25]. Thus, it is reasonable to
speculate that properly oriented cilia in the neural tube
may sense multiple cues.

Planar cell polarity signaling is responsible for cilia
orientation
CE is critical to neural tube formation as it elongates the
tissue so that the brain and spinal cord eventually form.
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Cells that participate in CE must be polarized, and this
specific cell shape is dependent on the PCP cascade
[17,28,65,66]. While this role for PCP in the neural tube
is well established, recent research connecting PCP sig-
naling to cilia positioning points to another way this
pathway could function in the neural tube. If PCP signal-
ing influences cilia orientation in the neural tube, as it
does in other developmental contexts, this would pro-
vide a mechanism for the cilia to be in the right place at
the right time.
Analyses of mutants in either PCP signaling or cilio-

genesis indicate that neither PCP signaling nor CE
require cilia. Mutants with disrupted cilia display normal
CE, and cilia play no known role in the process. Despite
this, a variety of data link PCP signaling and cilia
[16-20], raising the possibility that there may be inter-
play between the two in the neural tube. Mouse models
of the human ciliopathy Bardet-Biedl syndrome (BBS)
disrupt any of 12 BBS genes, which are localized to the
basal body and cilium and have phenotypes reminiscent
of PCP mutants [16]. Mutations in either Inturned or
Fuzzy, which regulate PCP signaling and CE, also display
abnormal ciliogenesis and secondary Shh defects [17,21].
Together, these data indicate that PCP signaling and cilia
have a relationship. It appears that PCP function is ne-
cessary for cilia orientation, which then underlies cilia
function. In the embryonic node, PCP signaling posi-
tions cilia in order for the flow necessary for left-right
axis specification to be established [19]. Furthermore, a
core PCP component, Vangl2, genetically interacts with
the core cilia machinery protein, IFT88, in kinocilia in
the organ of Corti [18]. Together, these data show the
reliance of cilia function on proper placement and orien-
tation of the cilium.
Given the role of PCP in cilia orientation, it is vital to

determine whether or not PCP signaling influences the
position and/or organization of cilia in the ventricular
zone of the neural tube. The first step would be to
examine cilia in the neural tube of known PCP mutants
to determine if the anecdotal arrangement of cilia is dis-
turbed. Finding a way to disrupt the placement of cilia
will confirm that their position is indeed deliberate, and
from there we will be able to pose the question of mech-
anism and function.

A sensory role
What remains unclear is whether the cilia in the neural
tube are there solely to transduce Shh signaling. After
all, in the lungs, motile cilia that clear mucus also ex-
press taste receptors [67], so perhaps all cilia can per-
form multiple functions. Several systems are suggestive.
For instance, the Caenorhabditis elegans nervous system
is ciliated, and those cilia are critical for chemosensation
[68]. In the mammalian brain, sensory cilia are found on
ependymal cells, which are multiciliated epithelial cells
that line the ventricles of the brain [23,25]. Additionally,
these cilia are motile and beat to circulate CSF. Mature
ependymal cells develop from radial glial precursors,
whose cilia regulate polarization of the mature epen-
dymal cells, underscoring the importance of cilia orien-
tation [22-24]. Furthermore, cells in the choroid plexus
possess clusters of primary cilia responsible for CSF pro-
duction, and loss of these cilia causes defects in auto-
crine signaling and transcytosis, leading to misregulation
of CSF production [25]. These data establish a sensory
role for many diverse cilia and make us wonder whether
cilia of the neural tube could also have such a function.
Additionally, the idea that neural tube cilia may have a
sensory function similar to that of the motile cilia dis-
cussed raises the question of whether motile cilia could
also be playing a role in Shh signaling. Could both sen-
sory and signaling functions be common to multiple
types of cilia?
Conclusion
Since a mouse mutant linked Shh and cilia almost a dec-
ade ago, the field has focused on understanding the
mechanistic links between the two. This work has
painted a dynamic picture, whereby key components
move into and out of cilia to regulate the ratio of GliA
and GliR and ultimately specify distinct cell fates in the
neural tube. Other signaling pathways have also been
linked to cilia, although whether such links are critical
in the neural tube remains unclear. The projection of
cilia into the lumen of the ventricular zone strongly sug-
gests that they could play a sensory role, in which case
the positioning of these cilia would be crucial and highly
regulated, possibly through PCP signaling. But the big-
gest question remains: do these cilia play another func-
tional role? Cilia in other contexts are strikingly
suggestive, and the field is poised to investigate for what
other tasks, if any, the cilia of the neural tube may be
responsible.
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