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Interleukin-1β sequesters hypoxia inducible factor
2α to the primary cilium
Angus KT Wann1*, Clare L Thompson1,2, J Paul Chapple2 and Martin M Knight1
Abstract

Background: The primary cilium coordinates signalling in development, health and disease. Previously we have
shown that the cilium is essential for the anabolic response to loading and the inflammatory response to
interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both
anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2
alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and
HIFs in inflammatory signalling.

Results: Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia
trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in
the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation
of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by
blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar
transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and
inhibited response to prolyl hydroxylase inhibition.

Conclusions: These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α
expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF
signalling during inflammation.

Keywords: Primary cilium, Hypoxia-inducible factor, Cytokine, Interleukin-1, Inflammation, Chondrocyte, Prolyl
hydroxylase, Intraflagellar transport
Background
The solitary primary cilium is a tubulin-based organelle
constructed by the majority of cell types upon exit from
the cell cycle. The cilium has emerged as fundamental
to, or a subtle tuner of, cellular signalling such as the
hedgehog [1-3], wnt [4,5], platelet-derived growth factor
(PDGF) [6], insulin growth factor (IGF) [7] and transforming
growth factor (TGF) pathways [8]. As such, it is implicated
in many facets of cell biology, exerting influence over the
cell cycle [9], differentiation [8,10,11] and mechanobiology
[12-15]. The cilium is consequently critical to the develop-
ment and health of many tissue types. The cilium’s tubulin
structure and contents are maintained and supplied by
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intraflagellar transport (IFT) proteins, which shuttle
proteins into the axoneme towards the tip and back to the
basal body at the cilia base [16,17]. Cilia structure, notably
length, and function are inter-related, as both are
largely defined by ciliary trafficking. This relationship
is highlighted by small molecule approaches and genetic
mutations in IFT and associated proteins which regulate
cilia trafficking producing a change in cilia length and
function [18-23]. Thus cilia length, which is altered in
many physiological and pathological contexts, provides an
indicator of ciliary trafficking.
Inflammation is often characterised by the elevation of

cytokines. The quintessential pro-inflammatory cytokine
Interleukin-1 (IL-1) canonically triggers a broad spectrum
of physiological consequences. These inflammatory signals
serve resolution and repair but also represent a component
at the heart of many diseases, from cancers to arthritis. IL-1
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has been shown to influence one or both α-subunits of
the hypoxia inducible factors (HIFs) [24-26], however
differences in the responses occur and are most likely
due to different cell types or experiment conditions.
The HIFs are transcription factors with a very broad
biological significance to many cell and tissue types
[27]. Canonical regulation of HIF abundance is governed
after transcription and translation in part due to the action
of oxygen sensitive enzymes, the hif-α prolyl hydroxylases.
These enzymes tag HIFs prior to Von Hippel Lindau
protein (vHL) ubiquitination and destruction in the
proteosome. Hypoxia maintains HIFα protein expression
through inhibition of prolyl hydroxylases and IL-1 is
suggested to effect subunit expression at the level of
transcription and in a similarly post-translational fashion
[26]. Relatively little is known about regulatory mechanisms
in HIF signalling, especially with regards to HIF-2 but
other putative mechanisms for the maintenance of HIF
expression include stabilisation through binding of
the molecular chaperone heat shock protein, HSP90
[28]. Recent studies have indicated that IL-1β increases
HIF-2α expression in murine and rabbit chondrocytes and
by doing so activates, among other targets, nitric oxide
synthase 2 and prostaglandin endoperoxide synthase-2 [29].
Somewhat in disagreement with this, studies using human
chondrocytes have carefully documented the roles of HIF
proteins, in anabolic (increases in aggrecan expression) and
anti-catabolic responses [30]. In other contexts such
as cancer, HIF-2α has been shown to directly activate
prostaglandin E2 (PGE2) signalling [31].
Previous work in our group has shown primary cilia

are required for both mechanically-induced upregulation
of aggrecan synthesis [15] and IL-1-induced PGE2 and
nitric oxide (NO) release [32]. We also observed cilia
elongation in response to IL-1. Interestingly, alteration in
HIF expression by hypoxia or pharmacological mimics has
also been shown to influence primary cilia length [33,34]
and activate the hedgehog pathway [35]. The rationale for
the current studies was therefore to examine the interaction
between IL-1 and HIF and elucidate the role of the primary
cilium and cilia elongation in this interaction.
Given the established roles for both HIFs [36] and

primary cilia [15,32,37-40] in cartilage physiology and
inflammatory arthritis [29], chondrocytes represent an
apt cell model with physiological and pathological relevance.
Furthermore the quiescent nature of chondrocytes makes
them ideal for studying primary cilia structure-function
since cilia are only expressed outside of the cell cycle.
We show here that IL-1 exposure results in dynamic

alteration in cilia length indicative of altered trafficking.
This is associated with both a transient increase in
HIF-2α expression and also, intriguingly, with cilia
localised accumulation of HIF-2α. We demonstrate
that prolyl hydroxylase inhibition also results in ciliary
elongation and a more pronounced recruitment of HIF-2α
to the ciliary base and sequestration to the ciliary
axonome. IL-1-induced cilia elongation and HIF2α
ciliary localisation is not mediated by the transcriptional
activity of HIFα or the increase in HIF-2 α expression.
Instead we propose that elongation drives ciliary sequestra-
tion leading to negative regulation of HIF-2α expression
and activity. These data reveal a completely new relation-
ship between HIFs and the primary cilium in inflammation,
which may have important implications for diseases such as
arthritis and cancer.

Methods
Pharmacological and biological reagents and primary
antibodies
All reagents were from Sigma Aldrich UK unless stated.
Cobalt chloride (CoCl2), Trichostatin A (TSA), Y27632
dihydrochloride monohydrate (Y27632); 17-(allylamino)
17-demethoxygeldamycin (GA), Dimethyloxallyl glycine
(DMOG): Cambridge Bioscience. Human recombinant
IL-1β, and Oncostatin-M (ONC-M): both Peprotech,
Echinomycin (Ech): Merck Chemicals. The primary cilium
axoneme was labelled using mouse anti-acetylated α tubulin
(Clone 6-11B-1, Sigma-Aldrich, 1:2,000) and rabbit anti-
arl13b (Source bioscience UK, 17711-1-AP, 1:1,000). HIF-1α
and HIF-2α were labelled for immunofluorescence and
western blot purposes using rabbit anti-HIF-1α (Santa-Cruz,
SC-10790, 1:500/1:200) and rabbit anti-HIF-2α (AbCam,
ab20654, 1:700). Mouse Anti-β-tubulin (Sigma, T4026,
1:5,000) was used for relative expression.

Cell sourcing and culture
Bovine and human primary articular chondrocytes were
isolated as per previous studies [32]. Cartilage was removed
from the metacarpal phalangeal joints of recently slaugh-
tered steers. Human cartilage was obtained from patients
undergoing total knee arthroplasty at the Royal London
Hospital, Barts and the London NHS Trust, London, UK.
This procedure was conducted with ethical approval
(East London and The City Research Ethics Committee)
and informed patient consent. Cartilage was removed from
the femoral condyles and tibial plateaus. The morphology
of the cartilage specimens was graded for gross degenera-
tive changes according to the international cartilage repair
society classification, and tissue that represented normal
(grade 0 or 1) was used for experiments. Cells were isolated
by sequential enzymatic digest before culture, for approxi-
mately 5 days, at high density (from 80,000 cells.mL-1) to
form stable, confluent, quiescent (as previously indicated by
ki-67 staining) cultures prior to treatments. Primary bovine
and human chondrocytes were cultured in low glucose
media with 10% serum as described previously, creating
the stable conditions best for cilia length studies [32]. The
chondrocyte cell line harbouring the hypomorphic mutation
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in IFT88, as first described in the Oak Ridge Polycystic
Kidney (ORPK) mouse model [41,42], were maintained as
conditionally immortalised cells (under permissive
conditions of 33°C culture and the presence of 10 ng.mL
interferon-γ). For all experiments conditional immortalisa-
tion was switched off by 3 days non-permissive culture at
37°C without interferon γ and as such used ‘primary’ cells
designated wild-type (WT) and ORPK as described both
in results here and previously [32]. Quiescent culture,
as for bovine primary cells (above), is established before
experiments were conducted.

Pharmacological treatments
Small molecules were added to confluent, monolayer cul-
tures with controls using suitable vehicles. Interleukin-1β
was used as previously described [32] at 10 ng.mL-1 unless
otherwise stated. All other doses are stated throughout.

Hypoxia study
Confluent cells were cultured for 24 h at 2% oxygen
using an oxygen controlled incubator (Binder, Germany).
Control cells were maintained at ambient oxygen.

Immunocytochemistry
Monolayer cultures were fixed with 4% paraformaldehyde
at 37°C for 8 min, permeabilised (5 min, 0.5% triton) and
blocked (30 min, 5% goat serum). Primary antibodies were
incubated in tandem in 0.1% bovine serum albumin-
phosphate buffered saline (BSA-PBS) at 4°C overnight or at
room temperature for 4 h. After washing, anti-mouse and
anti-rabbit alexa-fluor 488 and 594 secondaries (Invitrogen,
1:500) were used in tandem in 0.1% BSA-PBS at room
temperature for 1 h. Nuclei were counter-stained with 4',6-
diamidino-2-phenylindole (DAPI) (Sigma, 1 μg.mL-1) and
samples mounted prior to microscopy. Secondary antibody
only controls were conducted throughout.

Western blot analysis
Cell lysates were collected quickly on ice as follows.
Preparations were washed once in ice cold PBS containing
50 μM sodium orthovanadate before addition of a lysis
buffer of PBS, Roche cocktail inhibitors, 50 μM sodium
orthovanadate and 0.1% Igebal (both Sigma). Samples
were left on ice for 15 min before scraping and 5 x hom-
ogenisation through a 21G needle. Samples were then
spun at 13,000 RPM for 15 min at 4°C before supernatant
was frozen in liquid nitrogen. For westerns, samples were
diluted 1:1 with lamelli buffer and boiled at 100°C for
5 min. Samples of approximately 30 μL, or 50 μg protein
as assessed by Bradford assay, were run on a 10% tris
(hydroxymethyl)aminomethane-hydrochloride gel before
transfer to nitrocellulose membrane. Transfers and load-
ing were checked using ponceau staining. A 1h 5% milk
blocking step preceded primary antibody incubations
overnight at 4°C. Licor infrared secondarys were incubated
at 1:15,000 for 1 h at room temperature preceded and
followed by 3 × 10 min washes in 0.1% PBS Tween.
Relative protein expression was established by quantitative
analysis of specific bands (Licor Odyssey integrated inten-
sity values) and expressed relative to β-tubulin. Linearity
was tested by standard curve using serial dilutions of
samples probed for β-tubulin.

PGE2 ELISA
Quantitative immunoassay (R&D Systems, UK) was used to
quantify media PGE2 concentrations in media immediately
following 24 h DMOG treatment as previously described
[32]. Absorbance was measured at 450 nm. Results were
corrected for non-specific binding and read from a PGE2
standard curve fitted in GraphPad prism 5.

Imaging
Cilia imaging was conducted based on protocols described
in full elsewhere [32]. To review briefly, an oil immersion
x63 objective and scanning confocal microscopy (SP2 Leica)
were used to produce confocal serial sections for z stack
reconstructions of monolayer fields (pixel size = 0.23 μm or
smaller for single cilia images). From reconstructed z pro-
jections, cilia lengths were measured in Image J. Secondary
only controls were conducted to ensure thresholds for
co-localisation studies.

Statistics
Data manipulations and analysis were conducted using
GraphPad Prism 5. For cilia length measurements
Mann–Whitney U tests were performed due to the
naturally skewed nature of the data. Cilia length data
are presented in box and whisker format where the
centre line is the median, the box marks 25th-75th
percentiles and whiskers are 10th-90th percentiles.
For all cilia length data n is >100 cilia for each group.
Experiments were repeated at least twice, with three
coverslip replicates and cilia length data pooled. Cells
were isolated from at least six animals. For quantitative
western blots and qPCR unpaired t-tests were employed
and means with S.E.M error bars are shown. Incidence of
HIF-2α localisation was statistically assessed between
treatments using Fisher’s exact testing. Statistics on figures
indicate relative to untreated control unless otherwise
stated and * = P <0.05, ** = P <0.01, and *** = P <0.001.

Results
IL-1-induces reversible primary cilia elongation in a
temporal, dose-dependent manner and indicative of
altered ciliary trafficking
We first characterised the time-course and dose response
effects of IL-1β on primary cilia length in bovine primary
articular chondrocytes. The cilia structure was labelled
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with anti-acetylated alpha tubulin and visualised using
confocal microscopy (Figure 1A/B, red). The membrane
bound GTPase, ADP-ribosylation factor-like protein 13B
(ARL-13b), was also found to be enriched in the chondro-
cyte cilium (Figure 1B, green) in agreement with other
studies using other cell types [43]. ARL-13b was therefore
used as an additional cilia marker. IL-1β treatment resulted
in statistically significant increases in cilia length visualised
using both cilia markers. However, in IL-1β-treated prepa-
rations ARL-13b expression appeared less homogenous,
sometimes with large accumulations at the ciliary tip and
regions with absence of staining in the axoneme, indicating
alterations in ciliary trafficking. Therefore, cilia length data
shown throughout this study are based on anti-acetylated
alpha tubulin staining (Figure 1C onwards). In bovine
articular chondrocytes statistically significant changes in
cilia length occurred at 24 h, with concentrations of IL-1 β
in excess of 1 ng.mL-1 (Figure 1C). The commonly used
experimental concentration of IL-1β (10 ng.mL-1) induced
slight elongation (19% increase in median) at 1 h
(Figure 1D). Elongation was greater at 3 h (52% increase)
but not maximised until 24 h treatment (81% increase).
This increase at 24 h was statistically significantly different
to increases seen at 1 h and 3 h, P = <0.0001 and 0.04,
respectively. The elongation was reversible if the IL-1β
(10 ng.mL-1) treatment media was gently removed after
6 h and replaced with control media left for a further 18 h
(Figure 1F). In isolated human articular chondrocytes
primary cilia length varied from 0.96 μm to 6.05 μm with
a median value of 3.19 μm. IL-1β (10 ng.mL-1, 24 h)
significantly increased human chondrocyte primary
cilia length to a median value of 4.95 μm (P <0.0001,
n= >100 cilia, (Figure 1E) representing a 55% increase. Cilia
structure has been previously shown to be stabilised by
inhibition of the activity of histone de-acetylase 6 (HDAC-6),
present in the cilia axoneme [44,45]. We observe that cilia
elongation induced by IL-1β (10 ng.mL-1, 24 h) was
comprehensively blocked by concurrent treatment
with the broad spectrum HDAC inhibitor Trichostatin A
(TSA, 7 nM) or the Rho associated protein kinase (ROCK)
inhibitor, Y27632 (10 μM) (Figure 1G). Neither TSA nor
Y27632 had statistically significant effects on primary cilia
length when used in the absence of IL-1β. These results
indicate the IL-1 induced cilia elongation is dependent on
both tubulin deacetylation and actin remodelling.

IL-1 treatment increases HIF-2α expression
Next we measured HIFα protein expression levels with
IL-1β treatment using western blot. In primary bovine
chondrocytes normoxic HIF-1α protein expression was
low and appeared unaffected by IL-1β treatment within a
24 h period (Figure 2A/B). By contrast, HIF-2α expression
gradually increased with 10 ng.mL-1 IL-1β treatment
reaching statistical significance at 6 h before expression
dropped down again at 24 h (n = 3, Figure 2A/C). The
pathological effects of IL-1 in chondrocytes are often
synergised by concurrent treatments with oncostatin-M, a
member of the pro-inflammatory interleukin-6 (IL-6)
family [46]. Additionally the catabolic effects of HIF-2α
in cartilage have been attributed to IL-6 [47]. Therefore
oncostatin-M was used to investigate the influence of IL-6
member inflammatory cytokines on cilia length and HIF
expression. Oncostatin-M (10 ng.mL-1) had a small but
statistically significant effect (8% increase in median) on
cilia length in the absence of IL-1β. However, over a 24 h
treatment IL-1β (10 ng.mL-1) in isolation produced a 57%
increase in median cilia length but in the presence of
oncostatin M this was increased to 77%; the difference being
statistically significant (Figure 2D). This simultaneous
treatment with IL-1 and oncostatin-M had no effect on
HIF-2α expression (Figure 2E) indicating that elongation
with oncostatin-M is independent of HIF-2α expression.

HIF-2α is sequestered to the cilium by IL-1 treatment
HIFs are DNA-binding transcription factors that associate
with specific nuclear co-factors to transactivate genes
in order to respond to compromised oxygen tension.
Consequently, both HIF-1α and HIF-2α are found predom-
inantly in the nucleus as confirmed by co-localisation to
nuclear DAPI staining (Figure 3A). No gross cytoplasmic
re-localisation with IL-1β treatment was observed for either
HIF-1α or HIF-2α (Figure 3A). However, in some cells
HIF-2α was also found at the base of the primary cilium
(Figure 3B). On closer inspection, this basal localisation was
detectable in 59% of cells in untreated preparations. With
IL-1β treatment, however, 100% of cilia robustly stained for
HIF-2α, the difference being statistically significant
(P = 0.0033, Fisher’s exact test). This was associated with an
increased incidence of cells positive for HIF-2α expression
at the primary cilia base (P = 0.0035, Fisher’s exact test,
compared with untreated). Furthermore, in IL-1β-treated
cells, 11% of cilia showed axonemal HIF-2α localisation, in
addition to basal only expression. Cilia localisation data are
summarised graphically in Figure 3C. n = 65 and 62 cilia for
control and IL-1β groups, respectively. HIF-2α distribution
was also assessed in human articular primary chondrocytes.
While HIF-2α expression appeared higher in the cytoplasm
of human cells than bovine, robust staining was observed
at both the base and co-localised to acetylated alpha tubulin
in the axoneme providing further evidence for HIF-2α
ciliary trafficking (Figure 3D).

Inhibition of HIF hydroxylases results in primary cilia
elongation and is also associated with HIF-2α accumulation
at the cilium
Dimethyloxallyl glycine (DMOG) is a competitive inhibitor
of hif-α prolyl hydroxylase, thereby maintaining HIF-1α
subunit expression in normoxia [48]. Cobalt chloride (CoCl2)
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Figure 1 Interleukin-1β induces dose dependent and reversible cilia elongation. Confluent monolayers were treated with IL-1β before
immunofluorescent staining of cilia. (A) Staining of cilia with anti-acetylated-α-tubulin and (B) concurrent anti-arl13b staining with 24 h IL-1β
(10 ng.mL-1) treatment (scale =5 μm). (C) Bovine chondrocyte cilia length-IL-1 dose response at 24 h and (D) elongation time course at 10 ng.mL-1.
(E) Ciliary elongation in human articular chondrocytes exposed to IL-1β (10 ng.mL-1, 24 h). (F) Reversibility of cilia elongation induced by IL-1β
(10 ng.mL-1). (G) Inhibition of IL-1β induced-elongation with HDAC and ROCK inhibitors.
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Figure 2 Interleukin-1β increased HIF-2α expression. Confluent preparations were treated with cytokines and total protein isolated.
(A) Western blot analysis for HIFα expression during IL-1-treatment (10 ng.mL-1) time course. (B/C) Quantitative analysis of relative HIFα expression
normalised to untreated control and β-tubulin. (D) Cilia length, as determined from immunofluorescent staining, with concurrent IL-1 and
Oncostatin-M treatment, both at 10 ng.mL-1. (E) Western blot analysis of HIF2α expression with concurrent IL-1 and Oncostatin-M treatments.
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is similarly used to maintain HIFα expression by inhibiting
their hydroxylation and ultimate destruction by VHL and
has been used previously as a hypoxia mimic and shown to
influence cilia length [33]. Treatment with either DMOG
(10 μM) or CoCl2 (100 μM) resulted in cilia elongation
within 3 h, sustained to 24 h (Figure 4A/B). Most strikingly,
cilia length doubled with 24 h DMOG treatment. An 18%
increase in median cilia length was also observed in cultures
placed at 2% oxygen for 24 h (Figure 4C). Both DMOG and
CoCl2 modestly increased the total protein expression of
HIF-1α and HIF-2α protein subunits, despite the presence of
20% oxygen, with 24 h treatment. This was assessed by
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Figure 3 HIF-2α accumulates in the cilium with IL-1β treatment. (A) Whole cell HIFα expression (green), shown by immunofluorescent
labelling, co-localised to nucleus (blue) in bovine chondrocytes. (B) Field images (large left-hand panels) and single cilium images (three small panels)
showing varying degrees of HIF-2α expression in the cilium: negative cilia localisation (top), basal only localisation in samples treated with IL-1β
(middle) and axonomal and basal staining with exposure to IL-1β (bottom). Single cilia images correspond to white boxes in field images. (C) Percentage
of cilia exhibiting either basal only or axonomal and basal localisation of HIF-2α in untreated control cells or cells treated for 6 h with IL-1β (10 ng.mL-1),
n shown above bars, fisher’s exact test statistics in text. (D) HIF-2α co-localised to primary cilium in human articular chondrocyte treated
with IL-1β for 24 h.
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western blotting (n = 3 for each treatment group)
(Figure 4D/E). In DMOG treated preparations 95% of cilia
exhibited ciliary HIF-2α staining (P = 0.019, Fisher’s exact
test, compared with untreated control) with 50% of cilia
showing HIF-2α in the axoneme (P = 0.006, Fisher’s exact
test compared with IL-1β). A representative example of this
staining is shown in Figure 4F. Cilia localisation data are
again summarised graphically (Figure 4G), n= >65 and 71
cilia for control and DMOG groups, respectively.

IL-1 induced primary cilia elongation is independent of
increased HIF-2α expression
The evidence so far indicates a temporal, biochemical
and spatial relationship between HIF-2α and cilia structure
such that the elongation seen with IL-1β is correlated
with the recruitment of HIF-2α to the ciliary space.
These observations are also made when cells are
treated with DMOG, inhibiting HIF hydroxylation.
We therefore tested whether HIFα activity and expression
was required for IL-1-induced ciliary elongation. Addition
of echinomycin (Ech) (1 μM), which blocks HIF binding
to DNA [49], had no influence over IL-1β-induced
elongation indicating the transcriptional activity of this
protein was not required for this response (Figure 5A).
We next assessed the role of a candidate ciliary binding

partner and regulator of HIF expression, the molecular
chaperone, HSP90 [28,50]. This too was conducted in the
context of IL-1-induced ciliary length change. Combined
treatment of IL-1β (10 ng.mL-1) and HSP90 inhibitor
17-allylamino-17-demethoxygeldanamycin (GA, 7 nM)
for 24 h reduced IL-1β-induced HIF-2α expression back to
control levels (Figure 5B, n = 3 for protein expression).
However, GA treatment did not affect cilia length compared
with IL-1-treated preparations (Figure 5C). However,
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Figure 4 (See legend on next page.)
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(See figure on previous page.)
Figure 4 Prolyl hydroxylase inhibition and hypoxia increases cilia length and is associated with accumulation of HIF-2α at the cilium.
(A) Immunofluorescent staining with anti-acetylated α tubulin with 24 h DMOG (10 μM) treatment (scale =5 μm). (B) Primary cilia length with
prolyl hydroxylase inhibition. (C) Effect of 24 h hypoxia on primary cilia length. (D/E) Western blot analysis of HIFα expression after 24 h.
(F) Immunofluorescent staining with anti-acetylated tubulin (red) and anti HIF-2α (green) in cells treated with DMOG. (G) Graphical summary
of cilia localisation data for cells treated with DMOG, n above individual columns.
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despite the reduced HIF-2α expression, ciliary localisation
was still apparent in 75% of cells treated with both
GA and IL-1 (Figure 5D). It was also noted that ciliary
localisation was often, but not exclusively, correlated
with an apparent reduction in nuclear localised HIF-2α
compared with cells that did not express primary cilia
(Figure 5E). Together these data indicated primary cilia
elongation and the associated HIF-2α sequestration is
independent of increases in HIF-2α expression.

The loss of the primary cilium increases HIF-2α expression
and alters PGE2 response to prolyl hydroxylase inhibition
Having observed qualitative reductions in nuclear HIF-2α
associated with ciliary HIF-2α, we tested the hypothesis
that HIF-2α is sequestered to the cilium in order to
regulate HIF-2α expression and function. To do this
we used a chondrocyte cell line (denoted Oak Ridge
Polycystic Kidney (ORPK)) harbouring a hypomorphic
insertional mutation in TG737 encoding for polaris/IFT88
protein and resulting in reduced ciliation [15,41,42]
(Figure 5F). Cilia prevalence was reduced from approxi-
mately 80% in WT cells to approximately 10% in mutant
ORPK cells as a result of dysfunctional anterograde IFT88
(Figure 5G). Under normoxic conditions, where degradation
pathways are most active, HIF-2α expression levels were ele-
vated in ORPK cells compared with WT (P = 0.025, n = 3)
(Figure 5H/I). No such statistically significant difference was
observed in HIF-1α expression. The transcriptional targets
of HIF-2α in chondrocytes have been the subject of
some disagreement in the literature. Previously it has
been reported that HIF-2 positively regulates SOX9
and downstream expression of aggrecan in chondrocytes
[36]. We have previously reported ORPK cells to have
increased aggrecan expression [15]. Another proposed
target for HIF-2α in chondrocytes is prostaglandin
endoperoxide synthase-2, the enzyme responsible for
PGE2 production. In response to 24 h prolyl hydroxylase
inhibition with DMOG (10 μM) PGE2 production is
reduced in WT chondrocytes. This response is abolished in
ORPK cells (J). These data suggest that the cilium and IFT
exerts a negative influence over HIF-2α signalling at the
level of its expression. This is associated with increases in
gene targets of HIF-2α and alterations to the response
to prolyl hydroxylase inhibition. To summarise both
inflammatory stimuli and independent modulators of
HIF-2α mediate an increase in cilia length which drives
HIF-2α sequestration to the cilium. Furthermore, the
data indicate the cilium negatively regulates HIF-2α
expression and its downstream effects. Thus we propose
that sequestration of HIF-2α to the cilium represents part
of a post-translational feedback mechanism which may in
turn regulate HIF-2α signalling during the response to
inflammatory cytokines.

Discussion
This study examined the link between primary cilia and
HIFs in response to the inflammatory cytokine IL-1β.
The study links previously described roles for the cilium
in chondrocytes, including the regulation of matrix and
IL-1 signalling [15,32], the effect of hypoxia on primary
cilia length [33] and the biological roles of HIF-2α [29,36].
Within minutes of exposure, IL-1 is known to elicit early

signalling events and subsequently activate NFκβ [51]
inducing a plethora of cellular processes. In the present
study IL-1β induced statistically significant primary cilia
elongation at 1 h while more substantial elongation was
observed from 3 h (Figure 1A). This implies elongation
may be a gradual or adaptive response to an earlier activa-
tion of signalling pathways with maximal ciliary elongation
at 24 h also dependant on protein translation and recruit-
ment. We propose this elongation is reflective of increased
net anterograde trafficking into the cilium, as seen in other
ciliary elongation contexts [20] and indicated by changes in
previously homogenous ARL-13b cilia staining in control
samples. Given ARL-13b has established roles in IFT
[52] it is likely that the contents of the cilium are
also modulated by IL-1β treatment. The IL-1β ciliary
response is reversible, highlighting the dynamic nature of
any early elongation mechanisms. We show IL-1β-induced
elongation is firmly dependent on Rho/ROCK activity. This
is in agreement with other studies highlighting the under-
lying role for cytoplasmic actin in regulating cilia length
[21]. Histone deacteylase (HDAC) activity, probably the
tubulin deacetylase HDAC-6, is also required, perhaps in
releasing ciliary tubulin from stabilising acetylation in order
to alter structure either through its putative roles in arl
GTPase activities [52] or through histone deacetylation and
resultant alterations in gene expression.
In some agreement with the literature [29], we find that

HIF-2α expression is increased by IL-1β treatment within a
timeframe matching that of IL-1β-induced cilia elongation.
However, this increase appears transient in nature such
that it is most pronounced 6 h after IL-1β exposure with
no statistically significant increase in expression at
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Figure 5 Primary cilia elongation is independent of HIF-2α expression. Loss of primary cilium results in elevated HIF-2α expression and
altered response to DMOG. (A) Antagonism of HIF binding to DNA had no effect on IL-1β-induced elongation. (B) Hsp90 inhibition with 7 nM
GA inhibits IL-1-induced increases in HIF-2α expression but has no effect on IL-1β-induced cilia elongation (C). (D) HSP90 inhibition has no effect
on ciliary HIF-2α which is still observed by immunofluorescent staining, in the presence of GA. (E) HIF-2α nuclear accumulation appears reduced
in cells exhibiting primary cilia sequestering HIF-2α in response to IL-1. Hypomorphic mutation in the gene encoding for IFT88 in ORPK reduces
the ability to build a primary cilium. (F) Immunofluorescent labelling of the primary cilium with anti-acetylated α tubulin in WT and ORPK cells.
(G) Reduced primary cilia prevalence in ORPK. (H) Western blot analysis of HIF-1α and HIF-2α expression in WT and ORPK. (I) Quantification of
western shows increase in HIF-2α expression in ORPK cells. (J) Altered response to DMOG in ORPK with respect to PGE2 production. ++ represents
significant difference (P <0.01) from respective WT group.
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24 h. We do not find such an effect on HIF-1α protein
expression which was low and remained so in normoxic
culture with IL-1β treatment.
We show for the first time that HIF-2α, a transcription

factor found canonically in the nucleus, is also found
located at the base of the primary cilium. This may
imply HIF-2α trafficking through the basal body and or
transition zone region is critical to the cilium’s influence
[53]. Upon application of IL-1β and DMOG, this ciliary
localisation of HIF-2α is increased such that the majority
of cells are positive for HIF-2α at the cilia base and the
transcription factor becomes accumulated in the cilia
axonome. This suggests increased trafficking from the
basal body into the ciliary compartment, or reduced
ciliary exit, assuming localisation only becomes unequivo-
cally apparent by microscopy when enhanced in magnitude.
The oxygen sensitive prolyl hydroxylases are responsible
for HIFα hydroxylation, targeting these subunits for
subsequent destruction. Despite normoxic experimental
conditions, the inhibition of these enzymes increases the
expression of both HIFα subunits relative to untreated
controls. Saliently both prolyl hydroxylase inhibitors used
here, DMOG and CoCl2 elicit cilia elongation within 3 to
6 h of application despite exerting only subtle effects on
HIF protein levels. Hypoxia itself also induces cilia
elongation, albeit less dramatically, further linking HIFs to
cilia length regulation and in concord with studies in
kidney epithelia [33]. The physical recruitment of HIF-2α
to the cilium indicated either a potential role for HIF-2α
in modulating cilia structure or alternatively a role for the
cilium in regulating the signalling or expression of
HIF-2α. Our data indicate that despite the effects of
prolyl hydroxylase inhibition and IL-1β upon cilia length,
HIF-2α activity or expression does not cause ciliary
elongation. When echinomycin (a DNA binding blocking
agent for HIF-α) is added to IL-1β-treated preparations no
influence on ciliary elongation was seen indicating that
elongation does not depend on transcriptional HIFα activity.
A binding partner for HIF-2α, in the form of HSP90, has
previously been shown to be enriched in the cilium where it
offers a structurally stabilising role to the cilium in the face
of heat shock-mediated ciliary disassembly [44]. The binding
relationship known to exist between HSP90 and HIFα leads
to HIF stabilisation/induction [28] such that HSP90 defi-
ciency or inhibition delays HIF accumulation. HSP90 inhib-
ition with GA has been shown to potently inhibit HIF-2α
expression [50] and in these studies reduced IL-1β-induced
HIF2 expression to control levels thus abolishing IL-1β-
induced increases in HIF-2α. Critically, however, cilia length
changes with IL-1β were unaffected by GA treatment
and ciliary localised HIF-2α was still observed indicating
that trafficking to the cilium may be an ongoing event inde-
pendent of expression levels. It does not appear that gross
cellular HIF-2α expression regulates IL-1β-induced ciliary
elongation but rather that IL-1-induced elongation is a re-
sult of increased anterograde trafficking, which enhances
HIF-2α recruitment.
The trafficking of HIF-2α into the cilium may, therefore,

represent an important regulation of HIF-2α. We propose
that HIF-2α expression and transcriptional activity is
regulated by the ciliary compartment. This proposal is
supported by the finding that HIF-2α expression is elevated
in ORPK cells where ciliogenesis is disrupted.
The biological roles of HIF-2α are still subject for debate,

certainly in chondrocytes. Prolyl hydroxylase inhibition,
raising HIF expression by either pharmacological means
such as DMOG or hypoxic means, has been shown
previously to be both pro- and anti-inflammatory but
in chondrocytes hypoxia is proposed to be protective
in response to inflammatory stimuli [30]. We find inhibition
of PGE2 production in response to DMOG in WT cells is
lost in ORPK cells, suggesting a role for the cilium in the
response to prolyl hydroxylase regulation of HIF. Moreover,
we have previously shown aggrecan, an established
downstream target of HIF-2α, is upregulated in these
cells [15] while others have shown prolyl hydroxylase
inhibition to enhance matrix production [54]. In addition,
IL-1β has been shown to negatively regulate matrix gene
expression through downregulation of SOX9 [55].
Ciliary sequestration of transcription factors, to the

detriment of nuclear entry and/or activity, is not
without precedent as β-catenin is sequestered to the cilia
compartment, downregulating canonical wnt signalling
[5]. Additionally the functions of both Gli transcription
factors [56] and STAT6 [57] are regulated by translocation
to the cilium. Von Hippel Lindau protein (pVHL), the
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substrate recognition component of the E3 ubiquitin
ligase complex that selectively polyubiquitinates prolyl-
hydroxylated HIF-α subunits, has ciliary localisation [58].
This raises the possibility that the cilium is partially re-
quired as the locality for proteosomal targeting of HIF-2.
This may form part of a feedback loop following inflam-
matory stimuli, whereby HIF-2α is sequestered to the
cilium in order to target its degradation following vHL
ubiquitination. This proposal is outlined in a summary
schematic (Figure 6) which also seeks to summarise
the findings of this study. Clearly further lengthy study is
required to support this and starts with a requirement for
understanding how HIF-2α ciliary localisation is regulated.
There have been links made between the cilia compartment
and proteosomal degradation before. This link involved
the Bardet-Biedl syndrome (BBS) basal body proteins [59].
Intriguingly a study from 2008 indicates BBS4, involved in
cargo targeting [60] is a candidate HIF-2α binding partner
[61]. It may be through this interaction that HIF-2α is
sequestered and future manipulation of this recruitment
Figure 6 Proposal for cilia role in the regulation of HIF2α expression/
Rho-actin dependent modulation of anterograde intraflagellar trafficking (b
interleukin-6 (IL-6). Cilia elongation is also dependent on tubulin HDAC act
IL-1 triggers an initial increase in HIF-2α expression resulting in the sequest
hydroxylases by DMOG, CoCl2 and hypoxia is also associated with cilia elonga
such that accumulation of HIF-2a in the cilium drives further cilia elongation.
transcriptional activity at the nucleus by echinomycin (ECH) has no effect on
(GA) does not influence cilia elongation yet prevents the accumulation of HIF
of IFT88, results in an increase in HIF-2α protein levels suggesting the cilium e
the IL-1-induced increase in HIF2α is diminished at later time points following
of a negative feedback mechanism which influences the levels of HIF2α prote
may be conducted in order to establish the broader
repercussions of cilia HIF-2α recruitment.

Conclusions
In summary, these studies strongly highlight the temporal,
biochemical and importantly spatial relationship between
HIF proteins, especially HIF-2α, and the cilium in the
context of IL-1β signalling. For the first time we show
HIF-2α is localised to the cilia base and recruited to the
axoneme upon IL-1β exposure and inhibition of prolyl
hydroxylases. Our data are consistent with the proposal
that this recruitment to the primary cilium is involved in
regulating the activity of HIF-2α. The study is the first to
demonstrate primary cilia sequestration of HIF-2α and
illuminate this potential new role for the cilium in HIF
signalling during inflammation. Given the wide-ranging
physiological and pathological roles for both HIFs and the
primary cilium, the findings may have major implications
in a variety of pathologies including arthritis and cancer,
where HIFs and inflammation are implicated.
activity. Interleukin-1 (IL-1) stimulates ciliary elongation through
old arrow, black). This elongation is enhanced in the presence of
ivity, most likely HDAC6, and can be blocked by trichostatin A (TSA).
ration of HIF-2α to the ciliary compartment. The inhibition of prolyl
tion and HIF-2α accumulation, possibly as part of a feedback mechanism
However, HIF-2α is not required for cilia elongation as blockade of HIF
IL-1-induced elongation. Moreover, the Hsp90 inhibitor geldanamycin
-2α downstream of IL-1. Removal of the cilium, by hypomorphic mutation
xerts a negative influence over HIF2α. Consistent with this hypothesis,
ciliary sequestration. Thus we propose that the cilium functions as part
in by modulating its proteasomal targeting and ultimate destruction.
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