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Abstract 

The unicellular green alga, Chlamydomonas reinhardtii, is a biflagellated cell that can swim or glide. C. reinhardtii cells 
are amenable to genetic, biochemical, proteomic, and microscopic analysis of its basal bodies. The basal bodies 
contain triplet microtubules and a well-ordered transition zone. Both the mother and daughter basal bodies assemble 
flagella. Many of the proteins found in other basal body-containing organisms are present in the Chlamydomonas 
genome, and mutants in these genes affect the assembly of basal bodies. Electron microscopic analysis shows that 
basal body duplication is site-specific and this may be important for the proper duplication and spatial organization 
of these organelles. Chlamydomonas is an excellent model for the study of basal bodies as well as the transition zone.
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Phylogeny and conservation of proteins
The green lineage or Viridiplantae consists of the green 
algae, which include Chlamydomonas, the angiosperms 
(the land plants), and the gymnosperms (conifers, cycads, 
ginkgos). They are grouped together because they have 
chlorophyll a and b and lack phycobiliproteins. The green 
algae together with the cycads and ginkgos have basal 
bodies and cilia, while the angiosperms and conifers have 
lost these organelles. The green algae are often referred 
to as bikonts because they have two flagella. A unikont 
(eukaryotic cells with a single flagellum) is thought to be 
the ancestor of choanoflagellates, fungi, and animals [6]. 
The uniflagellated green alga Micromonas is an exam-
ple of a unikont [40]. It is possible to identify mutants in 
three genes in Chlamydomonas that assemble only one 
flagellum [13, 25, 42, 45, 46].

Many of the basal body and flagellar proteins are con-
served across a wide range of organisms by sequence 
comparisons [1, 33]. A small number of proteins identi-
fied by mutational analysis in a variety of organisms are 
needed to assemble the microtubule core of basal bodies; 
these include PLK4, SAS6, SAS4, BLD10/CEP135, POC1, 

Centrin, SPD2/CEP192, Asterless/CEP152; CEP70, 
delta-tubulin, and epsilon-tubulin. Chlamydomonas has 
homologs of all of these based on sequence conservation 
except PLK4, CEP152, and CEP192. Several lines of evi-
dence suggests that CEP152, CEP192, and PLK4 interact 
[20, 52] and their concomitant absence in several organ-
isms suggests that other mechanisms exist that allow for 
control of duplication [4]. For the conserved proteins, 
mutations or knockdown of SAS6, BLD10/CEP135, Cen-
trin, CEP70, delta-tubulin, and epsilon-tubulin affect 
basal body duplication and assembly in Chlamydomonas 
as has been observed in other organisms. The proteomic 
analysis of basal bodies from Chlamydomonas [30] iden-
tified multiple POC (proteome of centriole) proteins and 
many have homologs (see below). Because of this con-
servation in proteins and structure as described below, 
Chlamydomonas remains an important model organism 
for basal body and flagellar research.

Basal body structure
Chlamydomonas cells in interphase have a pair of mature 
basal bodies and a pair of probasal bodies [5, 22, 29, 
48] (Fig.  1). Both mature and probasal bodies have tri-
plet microtubules. The probasal bodies have an average 
length of 86  nm and the mature basal bodies have an 
average length of ~400 nm. Both the mature and probasal 
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bodies have a proximal cartwheel. The proximal end of 
the mature basal bodies contains a ring of amorphous 
material that is found below the cartwheel [42]. The cart-
wheel spokes require BLD12/SAS-6 [39] and the spoke 
tips require BLD10/CEP135 [37]. Spoke tips can still 
assemble in the absence of BLD12/SAS-6.

Cryo-electron tomography and 3D subtomogram aver-
aging of isolated basal bodies at 33  Å resolution reveal 
additional densities that represent non-tubulin proteins 
attached to the triplet microtubules, including a large 
inner circular structure in the basal body lumen [34]. 
The basal bodies have also been examined by serial thin-
section electron microscopy in an elegant study [22]. This 
study found evidence of rotational symmetry via a struc-
ture called the acorn, which is found at the distal end of 
the triplet microtubules as they transition to the doublet 
microtubules of the transition zone. It is a filament of 
about 10 nm that is present on the A-tubules of doublets 
1, 7, 8, and 9.

The cartwheel is very dynamic during mitosis. The 
length of the cartwheel undergoes significant changes 
during the cell cycle [3]. The cartwheel length in new 
probasal bodies that assemble during metaphase 
is ~107 nm and increases to ~163 nm in telophase. The 
elongated cartwheel may act to stabilize this forming 
probasal body [41]. In addition, the elongation of the 
cartwheel is concurrent with the elongation of triplet 
MTs of the daughter basal body prior to mitosis. Simi-
lar to the triplet MTs, the cartwheel in the developing 
daughter basal body during elongation is also signifi-
cantly longer than in interphase (137 + 23 vs. 42 + 5 nm, 

respectively). This additional length could become the 
excised SAS-6 structure that templates new centrioles as 
has been observed in mammalian cells [21].

The transition zone, which is  ~135  nm long, contains 
an elaborate stellate pattern in the interior of the micro-
tubule barrel [22, 43, 48] (Fig. 1). These stellate patterns 
are observed as an osmophilic H-structure in longitu-
dinal TEM sections (Fig.  1, TZ). In the transition zone, 
the Y-linkers are positioned between the microtubule 
core and the ciliary membrane. This is the region where 
CEP290 and NPHP4 localize [2, 7]. In the ciliary mem-
brane there are two sets of intramembranous particles. 
These are the ciliary necklace and the ciliary bracelet 
[57] (Fig. 2). The composition of the ciliary necklace and 
bracelet is not known. The ciliary bracelet has not been 
observed in other organisms.

The analysis of the uni3 mutant was instrumental in 
the identification of new tubulin isoforms [13]. The Chla-
mydomonas genome encodes delta, epsilon, and zeta 
tubulin isoforms. The loss of δ-tubulin results in the loss 
of triplet microtubules proximally [13, 42], and the loss of 
ε-tubulin results in the loss of doublet and triplet micro-
tubules [15, 18, 47]. Antibodies to ε-tubulin showed a 
ring around the basal bodies as well as 	 two pro-
jections coming off of each basal body that overlap the 
rootlet microtubule. Mutants of ζ-tubulin have not been 
identified [11].

Other structures and fibers
The basal bodies have a variety of associated structures as 
shown in Fig. 3.

Fig. 1  Electron tomography of Chlamydomonas basal bodies reveals characteristic 3D organization. a Mature basal bodies template the micro-
tubules of the flagella and are held together at the distal end by a distal striated fiber. The transition zone appears as an electron dense H-shaped 
structure in longitudinal view. TZ denotes the transition zone and DSF denotes the distal striated fiber. b Cross-sectional view showing distal striated 
fiber connecting mature basal bodies, two probasal bodies and four bundles of rootlet microtubules in a cruciate arrangement. DSF distal striated 
fiber, TF transition fiber, pBB probasal body, rMT rootlet microtubules. c Diagram showing distinct structural features of Chlamydomonas basal bodies 
(Reprinted with permission from Molecular Biology of the Cell; [42]). Bar = 200 nm
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Transition fibers
These fibers initiate at the beginning of the transition 
zone when the triplet microtubules become doublet 

microtubules. The basal body must be anchored to the 
plasma membrane, and this occurs via transition fibers 
[5, 12, 48]. The transition fibers are striated and end in 
knobs at the plasma membrane [43] and are likely to play 
roles similar to the distal and subdistal appendages of 
mammalian cells. The transition fibers may also serve as a 
docking site for intraflagellar transport (IFT) proteins [8]. 
Of the appendage proteins found in mammals, the Chla-
mydomonas genome has only CEP164 and CC2D2A.

Rootlet microtubules
The mother and daughter basal bodies are each associ-
ated with two microtubules bundles called the rootlet 
microtubules. Each basal body has a four-membered 
microtubule and a two-membered microtubule rootlet. 
The rootlet microtubules are stable and contain acety-
lated α-tubulin. The rootlets are attached to the basal 
bodies at specific triplet microtubules and remain asso-
ciated with the basal bodies during both interphase and 
mitosis. These microtubules form a cruciate pattern 
(Fig. 1b).

The rootlet microtubules attached to the basal bod-
ies have at least two functions. The four-membered 
rootlets mark the cleavage furrow [24]. In mutants with 
defective basal bodies, the rootlets lose their spatial 
organization and the cleavage furrow is misplaced rela-
tive to the spindle [18, 39]. The four-membered root-
let on the daughter basal body (D4) is also involved in 
placement of the photosensory eyespot at the end of 
the mitotic cell cycle. MLT1 localizes to D4 and centrin 
excludes it from the two-membered daughter rootlet 
(D2) [38]. Centrin is involved in excluding MLT1 from 
D2.

SF‑assemblin
Striated fibers overlay the two-membered rootlet micro-
tubules and contain the coiled-coil protein, SF-assemblin 
[32]. SF-assemblin staining is reduced to two dot-like 
structures at each spindle pole in metaphase, and at telo-
phase new fibers assemble.

Proximal fibers
The composition of these fibers is unknown but they also 
appear as striated fibers. Two proximal fibers attach the 
mother and daughter basal body at their proximal ends.

Centrin fibers
This is a calcium-binding protein with EF-hand domains 
and it is found in several basal body-associated struc-
tures. This protein is widely conserved in eukaryotes [4]. 
Centrin is also found in two patches on the anterior ends 
of the two-membered microtubule rootlets on the proba-
sal bodies, in the lumen of the basal body, and in the 

Fig. 2  Quick-freeze deep-etch electron microscopy showing the 
ciliary necklace composed of many intramembranous particles (red 
arrow) and the ciliary bracelet (blue arrow). Bar = 200 nm

Fig. 3  Fibers attached to the basal bodies. The mature basal bodies 
and the probasal bodies are shown as white microtubules with the 
cartwheel at the proximal region shown in green. The two mature 
basal bodies are found at an oblique angle to one another and are 
about 400 nm in length. They are connected at their distal end by 
the distal striated fiber (red) and connected at the proximal end by 
the proximal striated fiber (purple). Lateral fibers (yellow) connect the 
mature basal body to its daughter probasal body via the VFL3 protein. 
Centrin (in red) is shown in the lumen of the basal body, in the stellate 
fiber, and in the nucleo-basal body connector (NBBC). The four-rootlet 
microtubules are shown with the four-membered (M4 and D4) and 
the two-membered (M2 and D2). One of the rootlet microtubules is 
associated with a striated fiber that contains SF-assemblin (orange). 
The transition fibers (blue) are shown on one of the basal bodies but 
each basal body has nine transition fibers. A microtubule is about 
25 nm as an internal scale bar
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stellate fiber of the transition zone [22]. In addition, cen-
trin is found in the distal striated fibers, and the nucleo-
basal body connector.

Distal striated fibers
The mother and daughter basal bodies are connected by 
a large fiber called the distal striated fiber (DSF), which 
contain centrin (Fig. 1). The DSF disassembles in mitotic 
prophase so that the mother and daughter basal bodies 
can move apart to the opposite sides of the nuclear enve-
lope [31, 41]. The DSF requires triplet microtubules to 
assemble or attach. Mutations that affect the assembly of 
triplet microtubules have defects in the assembly/attach-
ment of the DSF [42].

Nucleo‑basal body connector
The two NBBCs extend from both basal bodies and con-
nect basal bodies with the nucleus [58]. Centrin missense 
mutations result in misorientation and missegregation of 
the basal bodies [36, 58] that result in a variable number 
of flagella. It is not clear if this is due to the loss of the 
DSF, the NBBC, or both.

Basal body duplication
In interphase of the mitotic cell cycle, the basal bod-
ies are attached to the plasma membrane and both the 
mother and the daughter basal bodies assemble flagella. 
At the beginning of mitosis, the transition zone is sev-
ered from the basal body at the proximal end of the tran-
sition zone ([41, 44]. The probasal bodies are elongated 
and new probasal bodies are initiated in association with 
the two older basal bodies in prophase/metaphase. The 
new probasal body appears next to triplet microtubules 
7 and 8 of the mature basal bodies. This suggests that 
there is a unique site that is licensed for duplication in 
a wild-type cell. The new probasal bodies first assemble 
singlet microtubules from the cartwheel structure. Dur-
ing telophase/cytokinesis when the doublet and triplet 
microtubules assemble, the microtubules assemble from 
the distal to the proximal end of the new probasal bodies 
[41]. PLK4, which is not present in the Chlamydomonas 
genome, forms a single spot that precedes the duplication 
of centrioles in mammalian cells [51]. It has been sug-
gested that this localization provides a site for duplica-
tion prior to the recruitment of SAS6.

The basal bodies are found near the poles of the spin-
dle, but they do not appear to act as microtubule organ-
izing centers for astral or spindle microtubules. The older 
basal bodies remain associated with the plasma mem-
brane [22, 41]. At telophase, the Chlamydomonas cell 
has four mature basal bodies and four probasal bodies. In 
centrin mutants (vfl2), segregation of the basal bodies is 
perturbed as discussed above. Cells with no basal bodies 

and with too many basal bodies have been observed in 
the centrin mutants [36] or epsilon-tubulin mutant (bld2) 
[18]. In the bld2 mutant, the spindles appear normal. 
Basal bodies can be regenerated de novo in the cells lack-
ing basal bodies [36].

There are conflicting results about the presence of 
basal bodies during meiosis [5, 54]. Triemer and Brown 
observed the presence of a pair of basal bodies near 
the nucleus and plasma membrane. Several basal bod-
ies mutants [bld2 (ε-tubulin) and bld10 (CEP135)] have 
recessive meiotic defects that suggest that basal bodies 
are needed for the successful completion of meiosis, but 
it is not known what role these basal bodies play.

Identification of basal body components
Proteomics was performed on isolated basal bodies [30]. 
In these preparations, chloroplast and mitochondrial 
proteins accounted for 55/195 proteins identified; some 
of the unidentified proteins may be from these orga-
nelles. Forty-five of the proteins were validated by exam-
ining localization to the centrioles in mammalian cells. 
mRNA levels were increased for 27 proteins and these 
were named BUG1-BUG27. Several of these are known 
to have roles in the flagella [27, 28, 50, 59]. Eighteen pro-
teins (POC1-POC18) were postulated to be part of the 
basal body complex. Two-dimensional gel electrophore-
sis of basal bodies [10] reveals over 200 proteins in iso-
lated preparations; additional proteomic analysis may be 
useful to identify additional proteins.

In mitosis, the transition zones are discarded from the 
basal bodies by severing that occurs at the proximal end 
of the transition zone [44]. Proteomics of these transition 
zone remnants have many of the proteins known to be in 
the transition zone from other organisms. These include 
CEP290, NPHP1, NPHP4, MKS1, MKS3/TMEM67, 
MKS6, Tectonic, AHI1, as well as several BBS proteins. 
The novel proteins that were identified by proteomics are 
ESCRT proteins. These include VPS4, VPS23, VPS28, 
VPS37, VPS60, and the exosome maturation protein 
ALIX/PCDP6IP [9]. Both subunits of katanin were also 
found [16, 17, 19]. An aminophospholipid transporter is 
present as well as two proteins with lipoxygenase homol-
ogy domains (POC2 and MOT51). The cell cycle pro-
teins, CDKA1 and CYCA1, are also present. Mutants of 
CDKA1 are required to initiate DNA replication in Chla-
mydomonas [55]. 33 novel proteins were also identified.

Examination of mRNA levels using synchronized cells 
shows that most of the known basal body genes, POC 
genes, and 4 BUG genes (BUG18, 23, 24, 27) show a peak 
increase in their mRNA levels just before cells enter into 
mitosis [60]. The levels of ε-tubulin, γ-tubulin, BUG25, a 
coiled-coil protein, POC7 (UNC-119), and MKS1 mRNA 
increase earlier when many of the genes involved in DNA 
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replication increase. δ-tubulin levels remain high until 
the cells reenter interphase with the introduction of light. 
Most of the BUG genes show patterns that are more 
similar to the pattern observed for flagellar genes. The 
cluster that is enriched in known basal body and POC 
genes contain over 1000 transcripts. These may encode 
additional proteins needed for basal body and transition 
zone assembly. As might be expected, the ESCRT pro-
teins found in the transition zone are not in the cluster 
enriched in basal body genes as they are likely to have 
multiple functions.

Notable basal body findings
The bld2 mutant was the first mutant identified that 
fails to assemble basal bodies and this result suggested 
that basal bodies were not essential in Chlamydomonas 
[14, 23]. The uni3 mutant, which is a deletion of 
δ-tubulin, provided the first evidence that additional 
tubulin isoforms are needed for basal body assem-
bly and maintenance [13, 42], and this was supported 
by the identification that the BLD2 encodes ε-tubulin. 
The Chlamydomonas BLD12/SAS6 protein was used in 
the crystallization of SAS6 ([56]). Evidence for de novo 
assembly of basal bodies came from using vfl mutants 
[36]. The calcium-binding protein, centrin, was identi-
fied in Chlamydomonas [26, 49]. A missense mutation 
in one of the EF-hand domains of centrin results in 
loss of several of the basal body-associated fibers [53], 
while knockdown of the centrin gene resulted in a fail-
ure to duplicate basal bodies [31]. Comparative genom-
ics using Chlamydomonas and Drosophila was a key 
to identifying many basal body and flagellar proteins. 
This lead to the realization that the proteins mutated in 
Bardet–Biedl Syndrome (BBS) affected flagellar func-
tion [1, 33]. Isolation of basal bodies lead to the identi-
fication of POC genes [30]. Isolation of transition zone 
remnants allows for a further proteomic characteriza-
tion of this important structural region and the find-
ing that multiple ESCRT proteins at this key structure 
[9]. The site-specific duplication of new basal bodies 
on specific microtubules was demonstrated in Chla-
mydomonas [41].

Strengths and future of basal body research 
in Chlamydomonas
The strength of Chlamydomonas has come from the abil-
ity to use multiple approaches. These include genetics, 
microscopy, and biochemistry. Chlamydomonas strains are 
haploid, which makes forward genetics straightforward. In 
addition, diploid strains can be selected and used for com-
plementation tests. The power of whole genome sequenc-
ing has made it easier to use forward genetics to identify 
new mutations that affect the structure and function of 

basal bodies and transition zone and then to identify the 
gene of interest by whole genome sequencing [35]. Most 
of the known basal body mutants have defects in flagel-
lar assembly; so rapid screens for cells that fail to swim 
properly can be performed. Basal body mutants that have 
defects in the triplet microtubules confer supersensitivity 
to Taxol, so secondary screens can be performed to iden-
tify structural mutants [19]. Screens for transition zone 
mutants are also possible using similar strategies. These 
mutants can be studied by electron tomography, quick-
freeze deep-etch electron microscopy and by proteomics to 
further understand the assembly pathways for basal bodies 
and organelles. Since basal bodies are essential to flagellar 
assembly and function, these studies must include the anal-
ysis of the flagellar composition and function as well.
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