POSTER PRESENTATION

Open Access

Coordination of TGF β /BMP signaling is associated with the primary cilium

L Lindbæk^{1*}, CB Warzecha¹, K Koefoed^{1,2}, JB Mogensen¹, F Schmid¹, LB Pedersen¹, LA Larsen², S Christensen¹

From Cilia 2014 - Second International Conference Paris, France. 18-21 November 2014

We previously showed that canonical TGF^β signaling is regulated in part by the primary cilium, and that ciliary TGF^β signaling is upregulated in stem cells differentiating into cardiomyocytes [1]. Ciliary signaling was shown to be associated with clathrin-dependent endocytosis at the ciliary pocket for activation of SMAD2/3 transcription factors that associate with and promote SMAD4 translocation to the nucleus for target gene expression. Here we investigated whether other receptor types of the TGFB/BMP superfamily are associated with the primary cilium and whether ciliary TGFB/BMP signaling regulates the commitment of stem cells to different lineages. Using retinal pigment epithelium cells, we demonstrate that multiple receptor systems within the TGF β /BMP superfamily localize to the cilium and the ciliary pocket region, including TGFB receptors I and II (TGF-RI/II), BMP receptors I and II (BMP-RI/II) as well as two isoforms of Activin II receptors (AcRIIa/b) that can be activated by their corresponding ligands to phosphorylate SMAD2/3, SMAD1/5, ERK1/2, AKT and TAK1 at the ciliary base. Further, knockdown of the feedback inhibitor of SMAD signaling, SMURF1, leads to increased SMAD1/5 phosphorylation at the ciliary base, indicating a major role of the primary cilium in balancing the cellular level of TGFB/BMP signaling to control cellular processes during development and in tissue homeostasis. Indeed, the level of ciliary TGF β / BMP signaling was shown to be associated with the ability to commit stem cells to either neurogenesis or cardiomyogenesis, such that downregulation of ciliary signaling promotes neurogenesis and inhibits cardiomyogenesis. Current studies focus on the mechanisms for targeting of TGFB/BMP superfamily receptors to the primary cilium, trafficking and activation of the receptors within the ciliary compartment, and how these

¹Department of Biology, University of Copenhagen, Copenhagen, Denmark Full list of author information is available at the end of the article processes contribute to differential cross-talking with other signaling pathways in the cilium and at the pocket region to control cellular processes during development.

Authors' details

¹Department of Biology, University of Copenhagen, Copenhagen, Denmark. ²Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.

Published: 13 July 2015

Reference

 Clement CA, Ajbro KD, Koefoed K, Vestergaard ML, Veland IR, Henriques de Jesus MP: TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Clement et al. Cell Rep 2013, 3(6):1806-1814.

doi:10.1186/2046-2530-4-S1-P17 Cite this article as: Lindbæk *et al.*: Coordination of TGFβ/BMP signaling is associated with the primary cilium. *Cilia* 2015 4(Suppl 1):P17.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) Bio Med Central

Submit your manuscript at www.biomedcentral.com/submit

© 2015 Lindbæk et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0) applies to the data made available in this article, unless otherwise stated.