POSTER PRESENTATION

Open Access

Genotype-Phenotype correlations in Joubert Syndrome in the Era of Next Generation Sequencing

R Bachmann-Gagescu^{1*}, J Dempsey², IG Phelps², C Isabella², D O'Day², B O'Roak³, J Shendure³, I Glass², D Doherty²

From Cilia 2014 - Second International Conference Paris, France. 18-21 November 2014

Objective

To provide extensive genotype-phenotype correlations for Joubert syndrome (JS), a ciliopathy characterized by a distinctive hindbrain malformation ("the molar tooth sign"), ataxia and cognitive dysfunction.

Methods

Phenotypic data was collected from the University of Washington JS cohort and all known JS genes were sequenced in 429 individuals (364 families) using the MIPS capture technique and next-generation sequencing.

Results

Core JS diagnostic features (hypotonia, ataxia, cognitive dysfunction, oculo-motor apraxia) were present in >80% of individuals, while abnormal breathing pattern was reported in 60%. Frequently associated features included retinal dystrophy (31.4%), renal disease (20.9%), coloboma (17.7%), polydactyly (15.3%), liver fibrosis (15.2%) and encephalocele (8%). Liver fibrosis and coloboma were strongly associated with each other (Odds Ratio 7.0, 95% Confidence Interval = 3.0-13.2), while retinal dystrophy and renal disease were weakly associated (O.R. 2.2, 95%C. I. = 1.7-5.6). Additional clinical features included other brain abnormalities (n = 73), seizures (n = 49), cleft palate (n = 16), hearing loss (n = 14) and psychiatric problems (n = 45). The genetic cause was identified in 60% of families, with 5 genes accounting for the majority of patients (C5ORF42, CEP290, CC2D2A, AHI1, TMEM67). Bi-allelic causal mutations in B9D2 and C2CD3 were identified in 2 families each. Bi-allelic mutations in 2 different

¹Institute for Molecular Life Sciences and Institute for Medical Genetics, University of Zurich, Zurich, Switzerland

Full list of author information is available at the end of the article

Conclusion

This study provides a comprehensive description of the phenotypic spectrum, genetic makeup and genotypephenotype correlations of a large JS cohort.

Authors' details

¹Institute for Molecular Life Sciences and Institute for Medical Genetics, University of Zurich, Zurich, Switzerland. ²Pediatrics, University of Washington, Seattle, WA, USA. ³Genome Sciences, University of Washington, Seattle, WA, USA.

Published: 13 July 2015

doi:10.1186/2046-2530-4-S1-P8 Cite this article as: Bachmann-Gagescu *et al.*: Genotype-Phenotype correlations in Joubert Syndrome in the Era of Next Generation Sequencing. *Cilia* 2015 4(Suppl 1):P8.

© 2015 Bachmann-Gagescu et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.