
Vertii et al. Cilia  (2016) 5:13 
DOI 10.1186/s13630-016-0030-8

REVIEW

Human basal body basics
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Abstract 

In human cells, the basal body (BB) core comprises a ninefold microtubule‑triplet cylindrical structure. Distal and 
subdistal appendages are located at the distal end of BB, where they play indispensable roles in cilium formation and 
function. Most cells that arrest in the G0 stage of the cell cycle initiate BB docking at the plasma membrane followed 
by BB‑mediated growth of a solitary primary cilium, a structure required for sensing the extracellular environment 
and cell signaling. In addition to the primary cilium, motile cilia are present in specialized cells, such as sperm and 
airway epithelium. Mutations that affect BB function result in cilia dysfunction. This can generate syndromic disorders, 
collectively called ciliopathies, for which there are no effective treatments. In this review, we focus on the features and 
functions of BBs and centrosomes in Homo sapiens.
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Basal body origin and basal body/centrosome 
cycle
Most cell types in humans have a single primary cilium 
that protrudes from the cell surface when the cell arrests 
in the G0 cell cycle stage. The basal body (BB) forms the 
base of the cilium and arises from the mother centriole 
of the centrosome [1, 2]. When a cell exits the cell cycle, 
the mother centriole docks at the plasma membrane and 
converts into a BB for primary cilium formation [2, 3]. 
Primary cilium formation is a dynamic process that can 
be reverted under mitogenic conditions. Cilia disassem-
bly is a poorly understood process that occurs when the 
cell re-enters the cell cycle. Two pathways are involved in 
this process, namely Nek2–Kif24 and AuroraA–HDAC6 
[4]. When the cell re-enters the cell cycle, BBs relinquish 
their function at the base of cilia, and convert to cen-
trosomes/spindle poles [5, 6].

Some specific cell types grow multiple motile cilia that 
beat synchronously to direct fluid flow, and produce mul-
tiple BBs [7]. One example is the mucociliary epithelium 
in airways, otherwise known as the mucociliary escalator. 

The escalator covers most of the bronchi, bronchioles, 
and nose, and functions in continuous beating to push 
unwanted microorganisms and mucus up and out into 
the throat [8]. Little is known about the mechanism for 
construction of a BB in multiciliated cells. What is known 
is that in proliferating cells, centrioles duplicate only once 
per cell cycle, whereas in multiciliated cells, hundreds 
of centrioles form almost simultaneously in a de novo 
pathway. However, a recent study identified an intriguing 
asymmetry in this pathway: about 90 % of centrioles were 
synthesized from the daughter centriole of the original 
centrosome [9]. BBs in these cells are thought to derive 
from a centrosome-like opaque cytoplasmic structure 
called the “deuterosome.” Two molecular players impli-
cated in this function include the protein Ccdc78 and 
Ccdc67, and the known centrosome proteins Cep152, 
Plk4, and SAS-6 [10]. From an evolutionary perspective, 
all metazoans rely on cytoplasmic de novo BB biogene-
sis for multiciliation [7]. The importance of de novo BB 
biogenesis in humans is illustrated in patients mutant for 
cyclin O. When this regulator of de novo BB biogenesis is 
mutated, patients exhibit progressive defects in the res-
piratory tract but lack the classical ciliopathy phenotype 
[11, 12].

During spermatogenesis, BBs are produced together 
with sperm metamorphosis in an interesting way. In 
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Homo sapiens, round spermatids undergo a complex 
differentiation process that results in mature spermato-
zoa. In spermatozoa, the sole function of the centriole is 
seemingly to template the motile cilium/flagellum. Since 
spermatids will not enter a new mitotic cycle, their cen-
trosomes undergo a functional shift to BBs that serve as 
templates for the assembly of the flagellum. Centrosome 
reduction then occurs. This process includes loss of the 
pericentriolar material (PCM) and the ability to nucle-
ate microtubules [13, 14]. All together, humans possess 
a complex arsenal of mechanisms to regulate the BB, 
although the idiosyncrasies between cell types that regu-
late these processes are unknown.

Review
Basic basal body structure and sub‑structures
The mother centriole of the centrosome serves as a physi-
cal template for human cilia formation (reviewed by 
Bornens 2012 [15]). The centrosome consists of a pair 
of MT-based centrioles (the mother/older and daugh-
ter), pericentriolar material, and pericentriolar satellites 
[16] (Fig. 1a). The centriole consists of 9 triplet microtu-
bules on its proximal end, and 9 doublet microtubules on 
its distal end [17–20]. At the center of the centriole is a 
cartwheel structure with a central hub, which organizes 
the ninefold symmetric MT centriole wall. CEP135 at the 
centriole wall links with SAS-6 at the cartwheel hub [21] 
(Fig.  1b). Distal ends of the BBs/mother centrioles pos-
ses two sets of appendages, namely distal (DAP) and sub-
distal (SAP) appendages. Human BBs and centrosomes 
contain five types of tubulin: α, β, γ, δ, and ε [22]. While 
MT polymers consist exclusively of α- and β-tubulin 
heterodimers; γ-tubulin is integrated into γ-tubulin ring 
complexes (γ-TURCs), which are responsible for MT 
nucleation [23–26]. ε-Tubulin associates with sub-distal 
appendages of the centrioles and is critical for centriole 
duplication and MT organization [27, 28].

DAPs (also called “transition fibers” in cilia) dock BBs 
at the plasma membrane and initiate ciliogenesis [29–31]. 
DAPs initiate ciliogenesis by mediating the formation of 
the ciliary vesicle through Rab GTPases [32] and IFT20 
[33], both of which are important vesicle trafficking com-
ponents [34–36]. C2cd3, which localizes to the distal end 
of the BB, is required for DAP formation [37]. During 
DAP assembly, Cep83 is required for recruitment of mul-
tiple DAP proteins including Cep89 (Cep123), SCLT2, 
FBF1, and Cep164 [30]. Cep164 is a multifunctional DAP 
protein that orchestrates several events during early cili-
ogenesis. For example, Cep164 is indispensible for ciliary 
vesicle formation [38, 39], and BB docking at the plasma 
membrane [29, 38]. Moreover, Cep164 directly recruits 
tau tubulin kinase-2 (TTBK2) to the BB [40], where it is 
critical for CP110 removal from the BB—an important 

prerequisite for ciliogenesis [41, 42]. These observations 
suggest that Cep164 mediates not only the BB-membrane 
docking step, but also coordinates ciliogenesis. In addi-
tion to Cep164, Cep89 (Cep123) participates in ciliary 
vesicle formation [43]. Consistent with a DAP role in cili-
ogenesis is the evidence that mutations in DAP proteins 
such as C2cd3 [44], Cep83 [45], Cep164 [46], and SCLT1 
[47] result in ciliopathies.

SAPs (also called “basal feet” in cilia) are involved in 
MT anchoring [48] (Fig.  1a), and were not considered 
to be involved in cilia function until recently. (1) Muta-
tions in SAP proteins have now been shown to cause 
ciliopathies [49–51]. (2) The SAP proteins, cenexin and 
centriolin, are specifically required for recycling endo-
some trafficking and ciliogenesis [34, 52, 53]. (3) SAPs 
and the ciliopathy protein complex, the BBSome [54] 
are connected in the sense that BBS4 is required for MT 
anchoring. The BBSome is a 7-protein complex that is 
associated with the ciliopathy, Bardet-Biedl syndrome 
[55]. Based on this evidence, SAPs, as BB sub-structures, 
may be involved in ciliary functions.

Pericentriolar satellites are dynamic dynein and kine-
sin-driven electron-dense granules located within and 
around the pericentriolar material (PCM) [56, 57]. Sat-
ellites consist of dozens of proteins, many of which are 
required for cilia formation [57]. This suggests that sat-
ellites modulate ciliogenesis, although their precise role 
in this process remains elusive [36, 57]. Recent evidence 
suggests that the satellite proteins, Cep290 and PCM1, 
are involved in ciliogenesis through modulating Rab8 
recruitment to BBs [58, 59]. In addition, recent studies 
demonstrate that autophagy, a process that turns over 
cellular debris, can promote ciliogenesis by degrading 
select centriolar satellite proteins such as OFD1 [60, 61]. 
OFD1 is localized to SAPs and pericentriolar satellites 
and is responsible for recruitment of Cep290 to these 
sites [62]. These results suggest that satellites are active 
BB substructures that contribute to ciliopathy pathogen-
esis when disrupted [63].

Another transient BB substructure, the ciliary vesicle 
(Fig. 1a, c), appears first as small vesicles that accumulate 
at DAPs of the BB before primary cilia formation. These 
vesicles appear to fuse to form a ciliary vesicle “cap.” The 
BB and associated cap is thought to move up to and fuse 
with the plasma membrane allowing the cilium to grow 
and extend out into the extracellular space. A ciliary pit is 
created after the cilium is fully made through an interac-
tion between the ciliary vesicle membrane and DAPs [64] 
(Fig. 1c, stages 4 and 5). Upon exit from G0 and primary 
cilia disassembly, cilia components and cilia membrane 
are inherited by the mother centriole. Strikingly, these 
components seem to be retained at the oldest spindle pole 
(the pole containing the mother/oldest centriole) when 
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the cell divides again [65]. The daughter cell that contains 
the oldest spindle pole and the inherited ciliary membrane 
components re-establishes a primary cilium earlier than 
the cell that lacks these ciliary components. These studies 
imply that the centrosome-associated ciliary membrane 
functions in temporal control of ciliogenesis [65].

During cilia assembly, the BB facilitates formation of 
the ciliary rootlet [66]. This structure is formed by oli-
gomers of the protein, rootletin, [67–69], which provides 
support for the cilium. Besides its function at the base 
(proximal end) of the BB, rootletin is also a component 
of the centrosome during G1 and S cell cycle stages and 
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Fig. 1 Structure of the human basal body (BB) at initial step of ciliogenesis. a Side view of the BB. DAP/TF, distal appendages/transition fibers, SAP/
BF, sub‑distal appendages/basal feet, CV, ciliary vesicle. b Cross section of the BB with SAS protein‑containing central hub, attached to Cep135 
and MT triplets. c. Primary ciliogenesis progresses through five morphologically distinct stages in human astrocytes. Stage 1: lateral vesicles are at 
the distal end of the BB. Stage 2: the lateral vesicles fuse and become a vesicular cap. Stage 3–4: stretch of vesicular cap and outgrowth of primary 
cilium. Stage 5: mature primary cilium surrounded with cilium pit [64]. Used with permission from [64]
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is required for centrosome cohesion [70]. Taken together, 
human BBs are equipped with transition fibers (DAPs), 
the ciliary rootlet, and basal feet (SAPs) [22].

Identification of basal body components
Proteomic analyses of human centrosomes have uncov-
ered many centrosome-associated proteins [71, 72]. BB 
components were identified in these studies as well as 
in the cilia proteome [73], in expression studies from 
cilia in ciliopathy patients [74], and in the spermatozoan 
proteome [75]. A number of mother-centriole-specific 
proteins were identified using PCP-SILAC mass spec-
trometry. Ccdc41 and Cep89 are two recent examples 
[71]. A latter study confirmed their DAP localization, and 
their critical roles in ciliary docking to the plasma mem-
brane and subsequent cilia formation [30]. Moreover, a 
cilia proteomic database, Cildb, is a useful resource for 
comparing BBs, centrioles, and centrosomes across dif-
ferent organisms [76, 77].

Other functions of the basal body
BBs possess most of the characteristics of centrosomes, 
including the ability to organize the microtubule 
cytoskeleton. It appears that one of the major regulatory 
roles of BBs is coordination of several complicated traf-
ficking pathways. One example is a sub-compartment of 
the endocytic pathway, called the recycling endosome. 
Two GTPases are involved in its organization and func-
tion, namely Rab8 and Rab11, which are also reported to 
have an association with the centrosome [34, 53]. Strik-
ingly, these same GTPases have been implicated in early 
stages of ciliogenesis through a Rab-GTPase cascade [78]. 
Recycling endosome vesicles modulated by Rab11 are 
brought to the basal body with the Rab8 guanine nucle-
otide exchange factor (GEF), Rabin8. It is proposed that 
once Rab11 vesicles with Rabin8 accumulate at the cen-
trosome, Rabin8 activates Rab8 to initiate ciliogenesis. 
Two additional known regulators of endocytosis, EHD1 
and EHD3, associate with this cascade and influence 
ciliary vesicle formation at DAPs [32]. These studies sug-
gest that during cilia formation, the centrosome usurps a 
handful of regulatory proteins to manufacture a cilium.

In addition to GTPase modulation of cilia, proteasome-
mediated protein degradation is another mechanism by 
which BBs/centrosomes influence ciliogenesis. Although 
proteasomes are distributed throughout the cell, specific 
biological functions of the proteasome directly at cen-
trosomes have been reported [79]. In mammalian neu-
rons, proteasomes localized at the centrosome regulate 
degradation of local ubiquitin conjugates promoting the 
elaboration of dendrite arbors [80]. Centrosome-local-
ized proteasomes are also responsible for centrosome 
deconstruction during fever [81]. Recently, BB-localized 

proteasomes were implicated in ciliogenesis by removal 
of a negative regulator of ciliogenesis, trichoplein [82]. 
However, the mechanism of proteasome recruitment to 
the centrosome and/or BB is unknown.

Although BBs are best defined by their role as the 
template for cilia formation, they also function in non-
ciliated human cells. For example, in lymphocytes, the 
centrosome docks to the plasma membrane via DAPs to 
form an immune synapse in much the same way as BBs 
dock to the plasma membrane to form cilia. Depletion of 
CP110, a negative regulator of ciliogenesis, and its con-
comitant removal from the mother centriole induces 
ciliogenesis in these cells, providing evidence that the 
centrosome at this step is transformed into a BB [83]. 
In this capacity, BBs facilitate IFT-dependent transport 
of T-cell receptors to the synapse, and mediate cytolytic 
granule release into the target cell [84–86].

Notable basal body findings
Sorokin was among the first to demonstrate the need for 
basal bodies to interact with membranes and for microtu-
bule growth to be coordinated with membrane extension 
during ciliogenesis [87]. This interaction between BBs 
with the plasma membrane requires the Rab GTPase cas-
cade and membrane-shaping proteins [32]. Another sig-
nificant step in basal body biology was the identification 
of a great number of human disorders, namely ciliopathies 
and brain-related disorders, like microcephaly, that are 
associated with mutations in BB components [11, 51, 74, 
88–98]. This, in turn, was paralleled by the realization that 
centrosome proteins are essential for cilia formation and 
integrity [29, 31, 99]. Taken together, these findings lay 
the groundwork for understanding the molecular mecha-
nisms of BB function that contribute to ciliopathies.

Conclusions
Strength and future of basal body research in humans
Essential efforts toward identification of additional muta-
tions in centrosome/BBs that cause ciliopathies exponen-
tially expand our current knowledge on centrosomes/
BBs. This will both facilitate our understanding of these 
important structures and, in turn, will help in the design 
of new therapies for ciliopathies, which currently can-
not be cured. For example, obesity and impaired cili-
ogenesis are key features for patients with BBS. During 
adipocyte differentiation, a transient primary cilium is 
formed, and the Wnt and Hedgehog receptors present 
on this primary cilium can inhibit adipogenesis. This has 
important implications for patients with BBS, where obe-
sity is perhaps caused through impaired ciliogenesis and 
Wnt/Hedgehog signaling. Moreover, the activity of adi-
pogenic glycogen synthase kinase 3 (GSK3) is enhanced 
in BBS patients because Wnt signaling is not available 
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to antagonize it. Therefore, pharmacological inhibition 
of GSKβ could become a potential treatment for BBS 
patients [100].

However, the overlapping properties and functions of 
centrosomes and BBs, and the ability of both to perturb 
ciliogenesis when disrupted, make it difficult to discern 
the molecular mechanisms behind ciliopathies. Moreo-
ver, it remains to be determined if cilia, centrosomes, and 
BBs all contribute to the etiology of these disorders [36] 
and if so, to what extent. Finally, other functions of BBs 
and centrosomes must be considered in the context of 
these disorders such as mitotic defects that are caused by 
cilia proteins [101].
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