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Abstract

Background: Meckel-Gruber syndrome (MKS) is an autosomal recessive lethal condition that is a ciliopathy. MKS
has marked phenotypic variability and genetic heterogeneity, with mutations in nine genes identified as
causative to date.

Methods: Families diagnosed with Meckel-Gruber syndrome were recruited for research studies following informed
consent. DNA samples were analyzed by microsatellite genotyping and direct Sanger sequencing.

Results: We now report the genetic analyses of 87 individuals from 49 consanguineous and 19
non-consanguineous families in an unselected cohort with reported MKS, or an associated severe ciliopathy in a
kindred. Linkage and/or direct sequencing were prioritized for seven MKS genes (MKS1, TMEM216, TMEM67/MKS3,
RPGRIP1L, CC2D2A, CEP290 and TMEM237) selected on the basis of reported frequency of mutations or ease of
analysis. We have identified biallelic mutations in 39 individuals, of which 13 mutations are novel and previously
unreported. We also confirm general genotype-phenotype correlations.

Conclusions: TMEM67 was the most frequently mutated gene in this cohort, and we confirm two founder
splice-site mutations (c.1546 + 1 G>A and c.870-2A >G) in families of Pakistani ethnic origin. In these families, we
have also identified two separate founder mutations for RPGRIP1L (c. 1945 C > T p.R649X) and CC2D2A (c. 3540delA
p.R1180SfsX6). Two missense mutations in TMEM67 (c. 755 T > C p.M252T, and c. 1392 C > T p.R441C) are also
probable founder mutations. These findings will contribute to improved genetic diagnosis and carrier testing for
affected families, and imply the existence of further genetic heterogeneity in this syndrome.
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Background
MKS is an autosomal recessive lethal condition character-
ized by occipital meningoencephalocele, polycystic kid-
neys, postaxial polydactyly and ductal plate malformation
of the liver. Other frequently observed features can in-
clude the Dandy-Walker malformation (or other posterior
fossa defects), dextrocardia, bowing of long bones, cleft lip
and/or palate, situs inversus, low set ears, microphthalmia
and iris coloboma. To date, mutations in nine MKS genes
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are reported as causative (Table 1). The protein products
of the nine MKS genes are all involved in the structure or
function of either the ciliary basal body/transition zone or
the axoneme of the primary cilia [1-5]. MKS is, therefore,
the most severe inherited condition in a suite of similar
conditions known as ciliopathies. Other conditions with
ciliary involvement include Joubert syndrome, nephro-
nophthisis, Bardet-Biedl syndrome, COACH syndrome
and Senior-Løken syndrome. All of these syndromes are
allelic at some loci, and share some phenotypic features.
Primary cilia are ubiquitous organelles, which contribute
to the multiorgan involvement in MKS and other ciliopa-
thy phenotypes.
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Table 1 Genes mutated in Meckel-Gruber syndrome and related ciliopathies

Locus Chromosome
location

Gene
name

Protein
name

Other ciliopathies Key
reference

Common mutation
in population

Reference

MKS1 17q22 MKS1 MKS1 BBS13 [1] Finnish - c. 1408-35_1408-7del29 [1]

MKS2 11q13.1 TMEM216 TMEM216 JBTS2 [2] Ashkenazi - p.R73L [2]

11q12.2 TMEM138 TMEM138 JBTS16 [3]

MKS3 8q22.1 TMEM67 MECKELIN JBTS6, NPHP11 [4] Pakistani - c. 1575 + 1 G>A [4]

MKS4 12q21.32 CEP290 CEP290 BBS14, JBTS5, LCA10, NPHP6, SLSN6 [5]

MKS5 16q12.2 RPGRIP1L RPGRIP1L JBTS7, NPHP8 [6] Mixed European -p.T615P [11]

MKS6 4p15.33 CC2D2A CC2D2A JBTS9 [7] Finnish - c. 1762 C> T [7]

MKS7 3q22.1 NPHP3 NPHP3 NPHP3 [8]

MKS8 12q24.31 TCTN2 TCTN2 [9]

MKS9 17p11.2 B9D1 B9D1 [10]

The nine genes reported to be mutated are listed, with key references indicated. Common founder mutations that have been identified previously are also
indicated, with the ethnicity of the population studied and any relevant reference.
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The genetic heterogeneity and phenotypic variability in
MKS have hindered the development of an evidence-
based strategy for genetic diagnosis. To facilitate the
process of genetic diagnosis for families, the unequivocal
identification of pathogenic variants, genotype-phenotype
correlations and founder mutations in specific ethnic
groups, therefore, has important clinical utility. To further
define the allelic series of pathogenic mutations for seven of
the nine known MKS genes, we have screened an unse-
lected cohort of 87 separate individuals affected with MKS,
from a total of 49 consanguineous families and 19 non-con-
sanguineous. We report the identification of mutations in
26 consanguineous and 13 non-consanguineous families,
and describe a total of 18 previously unreported mutations.

Methods
Patient ascertainment and research ethics statement
Blood samples and/or DNA samples from fetuses diag-
nosed with Meckel-Gruber or Meckel-like syndrome, un-
affected siblings and parents were collected from UK
centers. Adults were recruited to research studies after
informed consent, with adherence to the Declaration of
Helsinki ethical principles for medical research involving
human subjects. Studies had favorable ethical approval from
Leeds (East) Local Research Ethics Committee (study title
“Molecular genetic investigations of autosomal recessive
conditions”, REC reference number 08/H1306/85). DNA
was extracted using QIAGEN (Crawley, West Sussex, UK)
extraction kits following the manufacturer’s protocol by the
Yorkshire Regional Genetics Service (http://www.leedsth.
nhs.uk/sites/genetics/). Other DNA samples were obtained
from referring clinicians or collaborators.

Microsatellite genotyping and direct Sanger sequencing
DNA from affected individuals was genotyped for microsat-
ellite markers that flanked seven of the nine known MKS
genes (MKS1, TMEM216, TMEM67/MKS3, RPGRIP1L,
CC2D2A, CEP290 and TMEM237) at <1 cM genetic dis-
tance (Additional file 1: Table S1). Markers were PCR amp-
lified using standard protocols, with the forward primer 50
end-labelled with FAM (Sigma-Aldrich Ltd., Gillingham,
Dorset, UK). Samples were run on an ABI3100 sequencer
with ROX-500 (Applied Biosystems, Inc. Carlsbad, CA,
USA) size standard. In samples from singleton or multiplex
affected individuals of consanguineous origin, two homozy-
gous markers indicated putative linkage to a locus under in-
vestigation, prioritizing the gene for subsequent sequencing.
In non-consanguineous multiplex families, two or more
affected individuals sharing haplotypes for flanking markers
indicated putative linkage to a locus. DNA samples from
singleton non-consanguineous samples were screened for
the seven MKS genes described above. If linkage analysis
(when performed) did not specifically exclude the involve-
ment of the MKS1, MKS2, MKS3 and MKS6 loci, patients
were then sequenced for the MKS1, TMEM216, TMEM67
and CC2D2A genes. PCR primers were designed using Pri-
mer3 software (http://frodo.wi.mit.edu/primer3/) covering
all coding exons and flanking intronic regions (Additional
file 2: Table S2). A total of 188 coding exons were amplified
by standard PCR protocols. PCR products were then puri-
fied using Exo-SAP (USB) following the manufacturer’s
protocol. Bidirectional Sanger sequencing was performed
using a “BigDyev3.0” sequencing kit (Applied Biosystems,
Inc.) by standard protocols recommended by the manufac-
turer. Samples were run on a ABI3100 sequencer and ana-
lyzed using “SeqScape” and “Sequencing Analysis” software
(both Applied Biosystems, Inc.).

Analysis of mutations
The expected segregation of putative mutations was con-
firmed in families, whenever possible, and their absence
was confirmed in databases of common benign variants
(dbSNP http://www.ncbi.nlm.nih.gov/projects/SNP/, 1000
Genomes Project http://www.1000genomes.org/ and http://

http://www.leedsth.nhs.uk/sites/genetics/
http://www.leedsth.nhs.uk/sites/genetics/
http://frodo.wi.mit.edu/primer3/
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Table 2 Clinical data and sequencing results of consanguineous and non-consanguineous patients with MKS and
MKS-like phenotypes

Sample Mutation Phenotype

Id Ethnicity Gene Allele 1 Allele 2 OE PK PD DPM CLP DWM Other

Consanguineous

102 + 103+
244 + 270

Pakistani MKS1 c. 1448_
1451dupCAGG

MKS1 c. 1448_
1451dupCAGG

+ + + + Short neck, low set
ears, bilateral talipes,
syndactyly, micropenis,
situs inversus, congenital
heart defect inc.
dextrocardia, short femurs
and short spindle-shaped
tibiae, deformed tongue

264 Jordanian MKS1 c. 1408-35_1408-
6del30N

c.1408-35_1408-
6del30N

diagnosed with MKS

42 + 43 Pakistani TMEM138 c. A287G
p.H96R

c. A287G
p.H96R

+ + +

29A+ 33A Pakistani/
Mirpuri

TMEM67 c. 1575 + 1 G>A c. 1575 + 1 G>A + + + +

70 Pakistani/
Mirpuri

TMEM67 c. 1575 + 1 G>A c. 1575 + 1 G>A + +

76 Pakistani/
Mirpuri

TMEM67 c. 1575 + 1 G>A c. 1575 + 1 G>A + +

77117 Pakistani TMEM67 c. 1575 + 1 G>A c. 1575 + 1 G>A diagnosed with MKS

51 Pakistani/
Mirpuri

TMEM67 c. 870-2A>G c. 870-2A>G +

73 Pakistani/
Mirpuri

TMEM67 c. 870-2A>G c. 870-2A>G + + +

319 British TMEM67 c. 1392 C> T
p.R441C

c. 1392 C > T
p.R441C

+ + some dialation of
pancreatic ducts,
hydrocephalus,
posterior fossa cyst

347 Pakistani TMEM67 c. 1392 C> T
p.R441C

c. 1392 C > T
p.R441C

diagnosed with MKS

67FB Pakistani TMEM67 c. 647delA,
p.E216fsX221

c. 647delA,
p.E216fsX221

+ + + +

P95 Pakistani TMEM67 c. 1127A>C
p.Q376P

c. 1127A>C
p.Q376P

+ + +

125 Omani TMEM67 c. 383_384delAC
p.H128fsX140

c. 383_384delAC
p.H128fsX140

+ + + +

170 Turkish TMEM67 c. 1674 + 1 G>AN c. 1674 + 1 G>AN diagnosed with MKS

205 Chinese TMEM67 c. 1615 C> T
p.R549CN

c. 1615 C > T
p.R549CN

+ + hypoplastic
cerebellum, small
fourth ventricle with
large cisterna magna,
small defect in superior
aspect of occipital bone

C28 Pakistani TMEM67 c. 274 G>A
p.G92RN

c. 274 G>A
p.G92RN

MTS, coloboma,
mental retardation

39 Pakistani/
Mirpuri

CEP290 c. 1429 C> T
p.R477XN

c. 1429 C > T
p.R477XN

+ +

292 Pakistani CEP290 c. 954delT
p.S318fs16XN

c. 954delT
p.S318fs16XN

+

333 Pakistani CEP290 c. 5744insT
p.G1915FfsX1N

c. 5744insT
p.G1915FfsX1N

+

207 Pakistani RPGRIP1L c. 1945 C> T
p.R649XN

c. 1945 C > T
p.R649XN

+ + + small cerebellum
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Table 2 Clinical data and sequencing results of consanguineous and non-consanguineous patients with MKS and
MKS-like phenotypes (Continued)

336 Pakistani RPGRIP1L c. 1945 C> T
p.R649XN

c. 1945 C > T
p.R649XN

diagnosed with MKS

158 Pakistani CC2D2A c. 3540delA
p.R1180SfsX6N

c. 3540delA
p.R1180SfsX6N

+ + + + + low set ears, pulmonary
hypoplasia, intestinal
malrotation, markedly
enlarged pancreas- irregular
ducts on histology, brain
shows dilated fourth
ventricle with small
cerebellum, poorly
developed pyramidal
tracts and some possible
dysplasia in the basal
ganglia

180 Pakistani CC2D2A c. 3540delA
p.R1180SfsX6N

c. 3540delA
p.R1180SfsX6N

+ + + +

261 Jordanian TMEM237 c. 1066_1067dupC
p.Q356PfsX23

c. 1066_1067dupC
p.Q356PfsX23

meningomyelocele,
developmental delay,
cortical visual impairment

178 Pakistani/
Mirpuri

TMEM67 c. 1615 C> T
p.R549CN

not detected diagnosed with MKS

16 + 17 Pakistani CC2D2A c. 685_687delGAA
het p.E229del

not detected + +

66 F1 + 66 F2 Pakistani CC2D2A c. 685_687delGAA
het p.E229del

not detected + + + + absent uterus,
micrognathia,
bilateral talipes,
low set ears, wide
spread eyes

Non-Consanguineous

106 British MKS1 c. 1408-35_1408-
7del29

c. 1408-35_1408-
7del29

+ + + +

77172 Finnish MKS1 c. 1408-35_1408-
7del29

c. 811delC
p.H271fsX29N

diagnosed with MKS

74699 British MKS1 c. 1408-35_1408-
7del29

c. 1408-35_1408-
7del29

diagnosed with MKS

162 + 163 British TMEM216 c. 253 C > T
p.R85X†

c. 253 C> T
p.R85X†

+ + + + + facial dysmorphism,
postural deformities
of limbs, small
perimembranous
ventricular septal defect,
intestinal malrotation

176 + 177 British TMEM67 c. 1426 C> T
p.P476S††

c. 2440–3 C >A + + + + flexion deformity of
elbows and wrists,
low set ears

186 British TMEM67 c. 755 T > C
p.M252T

c. 653 G> T
p.R208X†††

+ +

302 British TMEM67 c.755 T > C
p.M252T

c.651 + 5 G>A
p.V217VfsN

+ + + agenesis of corpus
callosum

83527 Norwegian-
Indian

TMEM67 c. 755 T > C
p.M252T

c. 2882 C >A
p.S961YN

+ + +

74406a+ b TMEM67 c. 1351 C> T
p.R451X

c. 2108 T >A
p.V673A

+ + mental retardation,
retinal coloboma

210 + 239 Dutch CEP290 c. 679_680delGA
p.E227SfsX2

c. 1984 C > T
p.Q662X

+ + + abnormal cerebellum,
wide nasal bridge,
extended abdomen,
thoracic and
abdominal situs inversus,
intestinal rotation, small
bladder, uterus duplex
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Table 2 Clinical data and sequencing results of consanguineous and non-consanguineous patients with MKS and
MKS-like phenotypes (Continued)

153 + 154 French CEP290a c. 2251 C> T
p.R751X

c. 4864insTdelCG
p.R1622FfsX9N

+

166 British RPGRIP1L c. 1829A>C
p.H610P

c. 721_724delAATG
p.N241fsX25

+ + + +

128 British CC2D2A c. 3544 T > C
p.W1182R

c. 3774_3774insT
p.E1259fsX1

diagnosed with MKS

36 + 36A Pakistani/
Gujarati

RPGRIP1L c. 466 C > T
p.R156C*N

not detected + +

111 + 112 Portuguese CEP290 c. 1451delA
p.K484fsX8

not detected + + +

202 British CC2D2A c. 685_687delGAA
p.E229del**

not detected + + craniofacial
abnormalities related
to oligohydramnios,
bone-cartilage junctions
showed disarray

CLP, cleft lip/palate; DPM, ductal plate malformation; DWM, Dandy-Walker malformation; OE, occipital encephalocele; PD, polydactyly; PK, polycystic kidneys; * in
cis with c. 3790 G>A het p.D1264N, ** in cis with c. 3893 T >A p.V1298D; † p.R85X allele was present in 2/10,266 European/African/American controls in the
Exome Variant Server (EVS) database, †† p.P476S allele present in 6/7,012 European/American controls (EVS), ††† p.R208X allele present in 8/7,012 European/
American controls (EVS). The remaining changes are excluded in about 10,000 European/African/American controls (EVS). N indicates a novel mutation that has
not previously been reported. a indicates that affected siblings 153 + 154 are compound heterozygotes for CEP290 mutations, but both also carry a third
heterozygous putative pathogenic mutation in TMEM216 c. 188 T >G p.L63R.
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evs.gs.washington.edu/EVS/ as appropriate). The patho-
genic potential of putative missense mutations was assessed
by analysis with PolyPhen2 (http://genetics.bwh.harvard.
edu/pph2/), or by manual comparison of CLUSTALX align-
ments of protein homologues to determine the phylogenetic
conservation of mutated amino acid residues. We confirmed
the absence of the mutant alleles in a panel of 96 DNA sam-
ples from ethnically-matched normal control individuals.

Results
In this study we identified mutations in n= 38/68 (55.9%)
families that were recruited to the study (Table 2). Out of
all families with identified mutations, 19 (50%) had changes
in TMEM67 (Figure 1a), which highlights the prevalence of
TMEM67 mutations as a major cause of MKS. The second
most commonly mutated genes were CEP290 and MKS1
(each n=5/68 families; 3.2%). Mutations in CC2D2A and
RPGRIP1L each had mutations in n=3/68 families (7.9%).
TMEM216,TMEM138 and TMEM237 each had mutations
in only one family (2.6% each), confirming that these were
uncommon causes of the MKS phenotype.
In addition, six families were identified with a single het-

erozygous mutation in an MKS gene, but we were unable
to identify a second pathogenic variant. CC2D2A p.
E229del is probably a common variant, and it was
detected as a single heterozygous variant in two families
of Pakistani origin. In family 36+ 36A and family 202, two
changes in the same gene were detected but were inher-
ited in cis from the paternal line, so the pathogenic poten-
tial of these variants is unclear. We did not detect any
other potential pathogenic changes in any of the seven
MKS genes that we screened for these patients. Family
178 has the single heterozygous missense mutation p.
R549C that is likely to be pathogenic because the same
mutation is found in the homozygous state in family 205.
This mutation may be a Chinese founder mutation (K.
Szymanska, personal communication).
We identified homozygous mutations predicted to be

pathogenic in 50% of consanguineous families (Figure 1b).
Two families had mutations in MKS1. Family 264 had the
homozygous MKS1 mutation c. 1408-35_1408-6del30
(Figure 1c), which is almost identical to the “Finn major”
Finnish founder mutation (c. 1408-35_1408-7del29) with
one base-pair difference. Since family 264 is of Jordanian
origin and, therefore, has a different genetic background
from northern European patients with the “Finn major”
mutation, this finding suggests a mutation hot spot in this
intronic region of the MKS1 gene. We identified three dif-
ferent homozygous mutations in CEP290 in Pakistani
families. Two of these were frameshift mutations with one
nonsense, predicted to cause nonsense-mediated decay.
The majority of identified mutations were found in

TMEM67 (Figure 1b), comprising n= 14/47 (29.8%) fam-
ilies. Two splice-site mutations and one missense muta-
tion were identified as recurrent in families and, therefore,
probable founder mutations (Figure 1d). In patients of
Pakistani ethnic origin, the two TMEM67 splice-site
mutations are c. 1546+ 1 G>A and c. 870-2A>G, previ-
ously reported as common mutations in TMEM67 [6].
We identified the homozygous missense mutation p.
R441C in two families (319 and 347), a mutation reported
previously in the heterozygous state for patients with
COACH syndrome [7]. A missense mutation affecting the
same amino-acid residue, p.R441L, has also been reported
previously in an MKS patient [8]. Since families 319 and
347 have different ethnic origins (British and Pakistani,
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Figure 1 Pie charts summarizing mutation analysis in MKS and MKS-like patients. a) frequency of genes mutated in MKS and MKS-like
phenotype; b) frequency of MKS genes mutations in consanguineous patients; c) common mutations in MKS1; d) common mutations in
TMEM67; e) frequency of MKS genes mutations in non-consanguineous patients.
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respectively), this emphasizes the mutability of arginine
residues and their importance to the function of the pro-
tein since the neighboring residue p.R440 is also mutated
in MKS and MKS-associated ciliopathies [9-11].
We identified probable founder mutations in both

RPGRIP1L and CC2D2A for families of Pakistani ethnic
origin. The RPGRIP1L nonsense mutation c. 1945 C>T p.
R649X was observed in families 207 and 336, which are
reported to be unrelated. The frameshift mutation in
CC2D2A c. 3540delA p.R1180SfsX6 occurred in the unre-
lated families 158 and 180, with polydactyly noted as an
obligatory feature in all affected individuals.
Two-thirds (n= 13/19) of non-consanguineous families
had their causative mutations identified (Figure 1e), with
the majority of mutations (n= 10/13) in the compound
heterozygous state. The majority of identified mutations
were found in the TMEM67 gene, with mutations in
MKS1 and CEP290 the next frequent. In our cohort, the
“Finn major” mutation was found in all MKS1-mutated
patients, either in the homozygous state for two patients
(families 106 and 74,699 of British origin), and in one pa-
tient (family 77,172 of Finnish origin) as a compound het-
erozygous mutation in trans with the frameshift mutation
p.H271fsX29. Overall, the MKS1 “Finn major” mutation
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was the most frequent (Figure 1c). The heterozygous mis-
sense mutation p.M252T accounted for 30% of identified
alleles in TMEM67 in non-consanguineous patients. The
previously reported common Finnish CC2D2A mutation
is absent in our cohort [12], even though the MKS1 “Finn
major” Finnish mutation seems frequent. This suggests
that the latter is more widespread throughout European
populations, whereas the CC2D2A mutation seems to be
less common outside Scandinavia.

Discussion
There are previous reports of genotype-phenotype corre-
lations in MKS [8,9,13]. We confirm some of these corre-
lations with the available clinical data for our cohort of
MKS patients. Occipital encephalocele and polycystic kid-
neys were almost obligatory features for all patients. Indi-
viduals with TMEM67 mutations frequently had a
diagnosis of ductal plate malformation in the liver (n= 10/
19), but polydactyly was infrequent (n= 3/19) compared
to RPGRIP1L and CC2D2A mutated individuals (n= 4/6;
P< 0.001, chi-squared test) The Dandy-Walker malforma-
tion (or a posterior fossa defect) was occasionally observed
in patients with TMEM67 mutations (n= 3/19). Retinal
colobomata were only observed for TMEM67-mutated
individuals (n= 2/19). Furthermore, situs or gut malrota-
tion defects were never caused by TMEM67 mutations
(n= 0/19), in contrast to the occasional manifestation of
these clinical features with MKS1, TMEM216, CEP290 or
RPGRIP1L mutations (n= 4/17; P< 0.05, chi-squared test).
Mutation analysis in our MKS and MKS-associated

ciliopathy cohort has allowed us to observe some com-
mon mutations that have arisen from probable founder
effects, supported by the observation of common shared
haplotypes in affected individuals (Additional file 3: Figure
S1). These observations will allow initial prioritization of
gene and exon screened in affected patients. Patients diag-
nosed with MKS, and that have additional features of
ductal plate malformation and/or retinal coloboma,
should be tested for TMEM67 mutations since, in any
case, MKS mutations are most frequent in this gene. In
consanguineous families of Pakistani origin, the TMEM67
splice-site mutations c. 1546+ 1 G>A and c. 870-2A>G
should be prioritized. In addition, screening for missense
mutations between amino acid residues 250 to 570 would
detect a third (n= 10/29) of all of the TMEM67 mutations
in this cohort. It is likely that missense or nonsense muta-
tions of conserved arginine residues in this region (for ex-
ample, R441C, R451X and R549C), may be recurrent and
could, therefore, be founder mutations in other population
groups. In consanguineous Pakistani families, the probable
founder mutations RPGRIP1L c. 1945 C>T p.R649X and
CC2D2A c. 3540delA p.R1180SfsX6 should also be priori-
tized. For families of northern European (including
British) origin, without a known history of consanguinity,
testing the TMEM67 missense mutation p.M252T may be
useful, but the most common mutation is the MKS1 “Finn
major” mutation. Our results demonstrate the broad
phenotypic variability in MKS and the lack of clear
genotype-phenotype correlations to guide diagnostic
choices. Furthermore, some MKS mutations, such as the
TMEM67 p.R440Q missense mutation, are allelic for
Joubert syndrome and other ciliopathies.
The molecular basis of the phenotypic variability in

MKS may arise from oligogenic inheritance [14], where a
third modifier allele modifies the phenotypic effect of two
recessive alleles. It is interesting to note that many ciliopa-
thy and ciliary-related proteins interact and are reported
to create functional modules that are localized to discrete
structural regions of the cilium, such as the transition
zone [1-3,5]. The effect of modifier alleles may be to abro-
gate interactions between components of a functional
module, which may disrupt protein complexes or signal-
ing pathways giving rise to the ciliopathy phenotype. We
identified four different heterozygous changes in six
patients, in the absence of a second detectable pathogenic
mutation in the same gene or any other mutations in
other MKS genes. These heterozygous alleles could be po-
tential modifier alleles, but we have not exhaustively
excluded the possibility that a second pathogenic muta-
tion is a large deletion spanning exons and/or introns in
the same MKS gene, which would not be detected with
PCR amplification and direct sequencing alone. Although
we have not assessed gene dosage in these genes by, for ex-
ample, a multiplex ligation-dependent probe amplification
strategy, we have seen no evidence of allele drop-out at the
same or other known MKS loci following genome-wide
SNP genotyping of consanguineous patients (individuals
178, 16+17 and 66 F1+66 F2). We have also not excluded
the possibility that a second point mutation occurs deep
within introns or regulatory elements of the same MKS
gene. Interestingly, two affected siblings (153+154) were
compound heterozygotes for CEP290 mutations (Table 2),
but also carried a third heterozygous putative mutation
c. 188 T>G p.L63R in TMEM216. This was the only occur-
rence of possible triallelic inheritance in our cohort for the
seven MKS genes that we screened, although the pathogenic
potential of this third TMEM216 allele remains unclear.

Conclusion
In conclusion, our data provide further useful information
about the mutational load in MKS patients from different
ethnic backgrounds. With the ever-increasing power and
affordability of genetic sequencing technologies, there is
now the clear opportunity for the further rapid and robust
identification of mutations in patients referred for a
defined condition. As a prerequisite, there remains a
pressing clinical need for the dissemination of mutations
identified on a research basis, and the establishment of
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databases that provide detailed clinical phenotypes and
allelic series for specific genes.

Additional files

Additional file 1: Table S1. Primer sequences of microsatellite markers
used for genotyping of MKS loci.

Additional file 2: Table S2. Primer sequences used for direct Sanger
sequencing of MKS genes.

Additional file 3: Figure S1. Haplotypes for common mutations in
TMEM67, CC2D2A and RPGRIP1L. Putative shared common disease
haplotypes (genotypes in bold) are shown for the indicated microsatellite
markers on the left that flank the MKS genes TMEM67, CC2D2A and
RPGRIP1L. The numerical identifier of each affected individual is shown
underneath each haplotype (see Table 2 for further details).
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