

POSTER PRESENTATION

Open Access

Origin and extension of the IFT complex in early eukaryotic evolution

J van Dam^{1*}, MC Field², M Huynen¹

From First International Cilia in Development and Disease Scientific Conference (2012) London, UK. 16-18 May 2012

Background

The intraflagellar transport (IFT) complex is an ancient protein complex that facilitates active trafficking of proteins and molecules across the eukaryotic cilium. Based on similar domain compositions Avidor-Reiss et al. (2004) and Jékely et al. (2006) postulated that the IFT originates from an ancestral proto-coatomer complex that also gave rise to vesicle coating complexes (e.g. COPI, COPII, Clathrin) and the Nuclear Pore Complex. Using comparative genomics we provide direct phylogenetic evidence of the proto-coatomer origin of the IFT.

Results

We identified the COPI α , $-\beta 2$ and $-\epsilon$ subunits as closest paralogs to 12 IFT subunits comprising all three sub-complexes (IFT-A, -B and the BBSome). Our analysis suggests that IFT-A and the BBSome arose from an IFT-B like proto-IFT complex by intra-complex duplication of subunits. We show that the BBSome is a modular component that is lost in eukaryotic species as a precursor to ciliary loss in organisms such as fungi, apicomplexa and plants.

Conclusions

Identification of the proto-coatomer origin and subsequent evolution of the IFT complex strengthens the suspected involvement of IFT components in vesicle transport and provides a rationale for its mechanism. Expansion of ancestral subunits by duplication as well as co-evolution of specific subunits provides some insight on modularity and internal structure of the IFT complex.

Author details

¹CMBI, NCMLS, Radboud University Medical Centre, the Netherlands. ²Department of Pathology, University of Cambridge, UK.

* Correspondence: teunis,j.p.vandam@gmail.com

¹CMBI, NCMLS, Radboud University Medical Centre, the Netherlands
Full list of author information is available at the end of the article

Published: 16 November 2012

doi:10.1186/2046-2530-1-S1-P56

Cite this article as: van Dam et al.: Origin and extension of the IFT complex in early eukaryotic evolution. Cilia 2012 1(Suppl 1):P56.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

