De Jonckheere JF. A century of research on the amoeboflagellate genus Naegleria. Acta Protozoologica. 2002;41:309–42.
Google Scholar
Fulton C. Amebo-flagellates as research partners: the laboratory biology of Naegleria and Tetramitus. In: Prescott DM, editor. Methods Cell Physiol. Vol 4. 1970. p. 341–476.
Fulton C. Naegleria: a research partner for cell and developmental biology. J Eukaryot Microbiol. 1993;40:520–32.
Article
Google Scholar
Fulton C. Basal bodies, but not centrioles, in Naegleria. The Journal of Cell Biology. 1971;51:826–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fulton C, Simpson PA. Selective synthesis and utilization of flagellar tubulin: the multi-tubulin hypothesis. In: Goldman R, Pollard T, Rosenbaum J, editors. Cell Motility. 1976. p. 987–1005.
Lai EY, Walsh C, Wardell D, Fulton C. Programmed appearance of translatable flagellar tubulin mRNA during cell differentiation in Naegleria. Cell. 1979;17:867–78.
Article
CAS
PubMed
Google Scholar
Levy YY, Lai EY, Remillard SP, Fulton C. Centrin is synthesized and assembled into basal bodies during Naegleria differentiation. Cell Motil Cytoskeleton. 1998;40:249–60.
Article
CAS
PubMed
Google Scholar
Fritz-Laylin LK, Assaf ZJ, Chen S, Cande WZ. Naegleria
gruberi de novo basal body assembly occurs via stepwise incorporation of conserved proteins. Eukaryot Cell. 2010;9:860–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fritz-Laylin LK, Cande WZ. Ancestral centriole and flagella proteins identified by analysis of Naegleria differentiation. J Cell Sci. 2010;123:4024–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fulton C, Walsh C. Cell differentiation and flagellar elongation in Naegleria
gruberi. Dependence on transcription and translation. J Cell Biol. 1980;85:346–60.
Article
CAS
PubMed
Google Scholar
Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC. The genome of Naegleria
gruberi illuminates early eukaryotic versatility. Cell. 2010;140:631–42.
Article
CAS
PubMed
Google Scholar
Rodríguez-Ezpeleta N, Brinkmann H, Burger G, Roger AJ, Gray MW, Philippe H, Lang BF. Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans. Curr Biol. 2007;17:1420–5.
Article
PubMed
Google Scholar
Koonin EV. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol. 2010;11:209.
Article
PubMed
PubMed Central
Google Scholar
Iyer LM, Anantharaman V, Wolf MY, Aravind L. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol. 2008;38:1–31.
Article
CAS
PubMed
Google Scholar
De Jonckheere JF. Molecular definition and the ubiquity of species in the genus Naegleria. Protist. 2004;155:89–103.
Article
PubMed
Google Scholar
González-Robles A, Cristóbal-Ramos AR, González-Lázaro M, Omaña-Molina M, Martínez-Palomo A. Naegleria fowleri: light and electron microscopy study of mitosis. Exp Parasitol. 2009;122:212–7.
Article
PubMed
Google Scholar
Patterson M, Woodworth TW, Marciano-Cabral F, Bradley SG. Ultrastructure of Naegleria fowleri enflagellation. J Bacteriol. 1981;147:217–26.
CAS
PubMed
PubMed Central
Google Scholar
Dingle AD, Fulton C. Development of the flagellar apparatus of Naegleria. J Cell Biol. 1966;31:43–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larson DE, Dingle AD. Isolation, ultrastructure, and protein composition of the flagellar rootlet of Naegleria gruberi. J Cell Biol. 1981;89:424–32.
Article
CAS
PubMed
Google Scholar
Larson DE, Dingle AD. Development of the flagellar rootlet during Naegleria flagellate differentiation. Dev Biol. 1981;86:227–35.
Article
CAS
PubMed
Google Scholar
Gardiner PR, Miller RH, Marsh MC. Studies of the rhizoplast from Naegleria gruberi. J Cell Sci. 1981;47:277–93.
CAS
PubMed
Google Scholar
Lai EY, Remillard SP, Fulton C. The alpha-tubulin gene family expressed during cell differentiation in Naegleria gruberi. The Journal of Cell Biology. 1988;106:2035–46.
Article
CAS
PubMed
Google Scholar
Schuster FL. Ultrastructure of mitosis in the amoeboflagellate Naegleria gruberi. Tissue Cell. 1975;7:1–11.
Article
CAS
PubMed
Google Scholar
Walsh CJ. The structure of the mitotic spindle and nucleolus during mitosis in the amebo-flagellate Naegleria. PLoS One. 2012;7:e34763.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fulton C. Cell differentiation in Naegleria gruberi. Annu Rev Microbiol. 1977;31:597–629.
Article
CAS
PubMed
Google Scholar
Fritz-Laylin LK, Ginger ML, Walsh C, Dawson SC, Fulton C. The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Res Microbiol. 2011;162:607–18.
Article
CAS
PubMed
Google Scholar
Walsh C. Synthesis and assembly of the cytoskeleton of Naegleria gruberi flagellates. J Cell Biol. 1984;98:449–56.
Article
CAS
PubMed
Google Scholar
Walsh CJ. The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates. Eur J Cell Biol. 2007;86:85–98.
Article
CAS
PubMed
Google Scholar
Bunting M. A Preliminary Note on Tetramitus, a Stage in the Life Cycle of a Coprozoic Amoeba. Proc Natl Acad Sci USA. 1922;8:294–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fulton C. Transformation of Tetramitus amebae into flagellates. Science. 1970;167:1269–70.
Article
CAS
PubMed
Google Scholar
Outka DE, Kluss BC. The ameba-to-flagellate transformation in Tetramitus rostratus II. Microtubular morphogenesis. J Cell Biol. 1967;35:323–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balamuth W, Bradbury PC, Schuster FL. Ultrastructure of the amoeboflagellate Tetramitus rostratus. J Protozool. 1983;30:445–55.
Article
CAS
PubMed
Google Scholar
Levy YY, Lai EY, Remillard SP, Heintzelman MB, Fulton C. Centrin is a conserved protein that forms diverse associations with centrioles and MTOCs in Naegleria and other organisms. Cell Motil Cytoskeleton. 1996;33:298–323.
Article
CAS
PubMed
Google Scholar
Woodland HR, Fry AM. Pix proteins and the evolution of centrioles. PLoS One. 2008;3:e3778.
Article
PubMed
PubMed Central
Google Scholar
Kowit JD, Fulton C. Programmed synthesis of tubulin for the flagella that develop during cell differentiation in Naegleria gruberi. Proc Natl Acad Sci USA. 1974;71:2877–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai EY, Remillard SP, Fulton C. A beta-tubulin gene of Naegleria encodes a carboxy-terminal tyrosine. Aromatic amino acids are conserved at carboxy termini. J Mol Biol. 1994;235:377–88.
Article
CAS
PubMed
Google Scholar
Chung S, Cho J, Cheon H, Paik S, Lee J. Cloning and characterization of a divergent alpha-tubulin that is expressed specifically in dividing amebae of Naegleria gruberi. Gene. 2002;293:77–86.
Article
CAS
PubMed
Google Scholar
Fulton C. Centrioles. In: Reinert J, Ursprung H, editors. Origin and continuity of cell organelles; results and problems in cell differentiation. Vol 2. New York: Springer-Verlag, Inc; 1971:170–221.
van Breugel M, Hirono M, Andreeva A, Yanagisawa H-A, Yamaguchi S, Nakazawa Y, Morgner N, Petrovich M, Ebong I-O, Robinson CV, Johnson CM, Veprintsev D, Zuber B. Structures of SAS-6 suggest its organization in centrioles. Science. 2011;331:1196–9.
Article
PubMed
Google Scholar
Cottee MA, Raff JW, Lea SM, Roque H. SAS-6 oligomerization: the key to the centriole? Nat Chem Biol. 2011;7:650–3.
Article
CAS
PubMed
Google Scholar
Dingle AD. Control of flagellum number in Naegleria. Temperature shock induction of multiflagellate cells. J Cell Sci. 1970;7:463–81.
CAS
PubMed
Google Scholar
Dingle AD. Cellular and environmental variables determining numbers of flagella in temperature-shocked Naegleria. J Protozool. 1979;26:604–12.
Article
CAS
PubMed
Google Scholar
Kim H-K, Kang J-G, Yumura S, Walsh CJ, Cho JW, Lee J. De novo formation of basal bodies in Naegleria gruberi: regulation by phosphorylation. J Cell Biol. 2005;169:719–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee J, Kang S, Choi YS, Kim H-K, Yeo C-Y, Lee Y, Roth J, Lee J. Identification of a cell cycle-dependent duplicating complex that assembles basal bodies de novo in Naegleria. Protist. 2015;166:1–13.
Article
CAS
PubMed
Google Scholar
Suh MR, Han JW, No YR, Lee J. Transient concentration of a gamma-tubulin-related protein with a pericentrin-related protein in the formation of basal bodies and flagella during the differentiation of Naegleria gruberi. Cell Motil Cytoskeleton. 2002;52:66–81.
Article
CAS
PubMed
Google Scholar
Ohta M, Ashikawa T, Nozaki Y, Kozuka-Hata H, Goto H, Inagaki M, Oyama M, Kitagawa D. Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat Commun. 2014;5:5267.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopes CAM, Jana SC, Cunha-Ferreira I, Zitouni S, Bento I, Duarte P, Gilberto S, Freixo F, Guerrero A, Francia M, Lince-Faria M, Carneiro J, Bettencourt-Dias M. PLK4 trans-autoactivation controls centriole biogenesis in space. Dev Cell. 2015;35:222–35.
Article
CAS
PubMed
Google Scholar
Carvalho-Santos Z, Machado P, Branco P, Tavares-Cadete F, Rodrigues-Martins A, Pereira-Leal JB, Bettencourt-Dias M. Stepwise evolution of the centriole-assembly pathway. J Cell Sci. 2010;123:1414–26.
Article
CAS
PubMed
Google Scholar
Song K-J, Jeong S-R, Park S, Kim K, Kwon M-H, Im K-I, Pak JH, Shin H-J. Naegleria
fowleri: functional expression of the Nfa1 protein in transfected Naegleria gruberi by promoter modification. Exp Parasitol. 2006;112:115–20.
Article
CAS
PubMed
Google Scholar